UNM Algebra aind Rational Numbers

Most of the numbers you encounter in the real world are rational numbers-fractions, decimals, and percents. In this unit, you will build on your foundation of algebra so that it includes rational numbers.

Chapter 4
Factors alsal Firactions

(4) Factors and

What You'll Learn

- Lessons 4-1, 4-3, and 4-6 Identify, factor, multiply, and divide monomials.
- Lessons 4-2 and 4-7 Evaluate expressions containing exponents.
- Lesson 4-4 Factor algebraic expressions by finding the GCF.

Key Vocabulary

- factors (p. 148)
- monomial (p. 150)
- power (p. 153)
- prime factorization (p. 160)
- scientific notation (p. 186)
- Lesson 4-5 Simplify fractions using the GCF.
- Lesson 4-8 Write numbers in scientific notation.

Why It's Important

Fractions can be used to analyze and compare real-world data. For example, does a hummingbird or a tiger eat more, in relation to its size? You can use fractions to find the answer. You will compare eating habits of these and other animals in Lesson 4-5.

Getting Started

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 4.

For Lesson 4-1
Distributive Property
Simplify. (For review, see Lesson 3-1.)

1. $2(x+1)$
2. $3(n-1)$
3. $-2(k+8)$
4. $-4(x-5)$
5. $6(2 c+4)$
6. $5(-3 s+t)$
7. $7(a+b)$
8. $9(b-2 c)$

For Lesson 4-2
Order of Operations
Evaluate each expression if $x=2, y=5$, and $z=-1$. (For review, see Lesson 1-3.)
9. $x+12$
10. $z+(-5)$
11. $4 y+8$
12. $10+3 z$
13. $(2+y) 9$
14. $6(x-4)$
15. $3 x y$
16. $2 z+y$

For Lesson 4-8
Product of Decimals
Find each product. (For review, see page 715.)
17. $4.5 \cdot 10$
18. $3.26 \cdot 100$
19. $0.1 \cdot 780$
20. $15 \cdot 0.01$
21. $3.9 \cdot 0.1$
22. $63.2 \cdot 0.1$
23. $0.01 \cdot 0.5$
24. $301.8 \cdot 0.001$

FOLDABLES

Study Organizer

Factors and Monomials Make this Foldable to help you organize your notes. Begin with four sheets of notebook paper.

Step 1 Fold

Fold four sheets of notebook paper in half from top to bottom.

Step 3 Cut Tabs into Margin

Make the top tab 2 lines wide, the next tab 4 lines wide, and so on.

Step 2 Cut and Staple

Cut along the fold.
Staple the eight halfsheets together to form a booklet.

Step 4 Label

Label each of the tabs with the lesson number and title.

Reading and Writing As you read and study the chapter, write notes and examples on each page.

4-1 Factors and Monomials

What Youll Leam

- Determine whether one number is a factor of another.
- Determine whether an expression is a monomial.

Vocabulary

- factors
- divisible
- monomial

How are side lengths of rectangles related to factors?

The rectangle at the right has an area of $9 \cdot 4$ or 36 square units.
a. Use grid paper to draw as many other rectangles as possible with an area of 36 square units. Label the length and width of each rectangle.
b. Did you draw a rectangle with a
 length of 5 units? Why or why not?
c. List all of the pairs of whole numbers whose product is 36 . Compare this list to the lengths and widths of all the rectangles that have an area of 36 square units. What do you observe?
d. Predict the number of rectangles that can be drawn with an area of 64 square units. Explain how you can predict without drawing.

FIND FACTORS Two or more numbers that are multiplied to form a product are called factors.

So, 4 and 9 are factors of 36 because they each divide 36 with a remainder of 0 . We can say that 36 is divisible by 4 and 9 . However, 5 is not a factor of 36 because $36 \div 5=7$ with a remainder of 1 .

Sometimes you can test for divisibility mentally. The following rules can help you determine whether a number is divisible by $2,3,5,6$, or 10 .

Concept Summary
 Divisibility Rules

A number is divisible by:

- 2 if the ones digit is divisible by 2 .
- 3 if the sum of its digits is divisible by 3 .
- 5 if the ones digit is 0 or 5 .
- 6 if the number is divisible by 2 and 3 .
- 10 if the ones digit is 0 .

Examples

$54 \rightarrow 4$ is divisible by 2.
$72 \rightarrow 7+2=9$, and 9 is divisible by 3.
$\rightarrow \quad$ The ones digit is 5 .
$\rightarrow \quad 48$ is divisible by 2 and 3.
$\rightarrow \quad$ The ones digit is 0 .

Example 1 Use Divisibility Rules

Determine whether 138 is divisible by 2,3,5,6, or 10 .
Number Divisible?

Reason

The ones digit is 8 , and 8 is divisible by 2 .
The sum of the digits is $1+3+8$ or 12 , and 12 is divisible by 3 .

The ones digit is 8 , not 0 or 5 . 138 is divisible by 2 and 3.
The ones digit is not 0 .

So, 138 is divisible by 2,3 , and 6 .

Example 2 Use Divisibility Rules to Solve a Problem

WEDDINGS A bride must choose whether to seat 5, 6, or 10 people per table at her reception. If there are 192 guests and she wants all the tables to be full, which should she choose?

Seats Per Table
Yes/No

Reason

5 no The ones digit of 192 does not end in 0 or 5 , so 192 is not divisible by 5 . There would be empty seats.

6 yes
192 is divisible by 2 and 3, so it is also divisible by 6 . Therefore, all the tables would be full.

10 no The ones digit of 192 does not end in 0 , so 192 is not divisible by 10 . There would be empty seats.

The bride should choose tables that seat 6 people.

You can also use the rules for divisibility to find the factors of a number.

Example 3 Find Factors of a Number

Reading Math

Divisible/Factor
The following statements mean the same thing.

- 72 is divisible by 2.
- 2 is a factor of 72 .

List all the factors of 72.
Use the divisibility rules to determine whether 72 is divisible by $2,3,5$, and so on. Then use division to find other factors of 72.
\(\left.$$
\begin{array}{|c|c|c|}\hline \text { Number } & \begin{array}{c}72 \text { Divisible } \\
\text { by Number? }\end{array} & \begin{array}{c}\text { Factor } \\
\text { Pairs }\end{array}
$$

\hline 1 \& yes \& 1 \cdot 72

\hline 2 \& yes \& 2 \cdot 36

\hline 3 \& yes \& 3 \cdot 24

\hline 4 \& yes \& 4 \cdot 18

\hline 5 \& no \& -

\hline 6 \& yes \& 6 \cdot 12

\hline 7 \& no \& -

\hline 8 \& yes \& 8 \cdot 9

\hline 9 \& yes \& 9 \cdot 8

\hline\end{array}\right\}\)| Use division to
 find the other
 factor in each
 factor pair.
 $72 \div 2=36$ |
| :---: |

So, the factors of 72 are $1,2,3,4,6,8,9,12,18,24,36$, and 72 .

ALGEBRA CONNECTION

Reading Math

Monomial

The prefix mono means one. A monomial is an expression with one term.

MONOMIALS A number such as 80 or an expression such as $8 x$ is called a monomial. A monomial is a number, a variable, or a product of numbers and/or variables.

Monomials		Not Monomials	
4	a number	$2+x$	two terms are added
y	a variable	$5 c-6$	one term is subtracted from another term
$-2 r s$	the product of a number and variables	$3(a+b)$	two terms are added $3(a+b)=3 a+3 b$

Concept Check Explain why $7 q \cdot n$ is a monomial, but $7 q+n$ is not.

Before you determine whether an expression is a monomial, be sure the expression is in simplest form.

Example 4 Identify Monomials

Determine whether each expression is a monomial.

a. $2(x-3)$
$2(x-3)=2 x+2(-3) \quad$ Distributive Property
$=2 x-6 \quad$ Simplify.
This expression is not a monomial because it has two terms involving subtraction.
b. $-48 x y z$

This expression is a monomial because it is the product of integers and variables.

Check for Understanding

1. Explain how you can mentally determine whether there is a remainder when 18,450 is divided by 6 .
2. Determine whether 3 is a common factor of 125 and 132. Explain.
3. OPEN ENDED Use mental math, paper and pencil, or a calculator to find at least one number that satisfies each condition.
a. a 3-digit number that is divisible by 2,3 , and 6
b. a 4-digit number that is divisible by 3 and 5 , but is not divisible by 10 .
c. a 3-digit number that is not divisible by $2,3,5$, or 10

Guided Practice Use divisibility rules to determine whether each number is divisible by 2, 3, 5,6 , or 10 .
4. 51
5. 146
6. 876
7. 3050

List all the factors of each number.
8. 203
9. 80
10. 115

ALGEBRA Determine whether each expression is a monomial. Explain why or why not.
11. 38
12. $2 n-2$
13. $5(x+y)$
14. $17(4) k$

Application
15. CALENDARS Years that are divisible by 4 , called leap years, are 366 days long. Also, years ending in " 00 " that are divisible by 400 are leap years. Use the rule given below to determine whether 2000, 2004, 2015, 2018, 2022, and 2032 are leap years.

If the last two digits form a number that is divisible by 4 , then the number is divisible by 4 .

Practice and Apply

Homework Help

For Exercises	See Examples
$16-27$	1
$28-35$	3
$36-47$	4
$48-51$	2

Extra Practice See page 730.

History
In 1912, when there were 48 states, the stars of the flag were arranged in equal rows. In 1959, after Alaska joined the Union, a new arrangement was proposed.
Source: www.usflag.org

Use divisibility rules to determine whether each number is divisible by 2,3, 5,6 , or 10 .
16. 39
17. 135
18. 82
19. 120
20. 250
21. 118
22. 378
23. 955
24. 5010
25. 684
26. 10,523
27. 24,640

List all the factors of each number.
28. 75
29. 114
30. 57
31. 65
32. 90
33. 124
34. 102
35. 135

ALGEBRA Determine whether each expression is a monomial. Explain why or why not.
36. m
37. 110
38. $s+t$
39. $g-h$
40. $-12+12 x$
41. $3 c+6$
42. $7(a+1)$
43. $4(2 t-1)$
44. $4 b$
45. $10(-t)$
46. $-25 a b c$
47. $8 j(4 k)$

MUSIC For Exercises 48 and 49, use the following information.
The band has 72 students who will march during halftime of the football game. For one drill, they need to march in rows with the same number of students in each row.
48. Can the whole band be arranged in rows of 7? Explain.
49. How many different ways could students be arranged? Describe the arrangements.

HISTORY For Exercises 50 and 51, use the following information.
Each star on the U.S. flag represents a state. As states joined the Union, the rectangular arrangement of the stars changed.
50. Use the information at the left to make a conjecture about how you think the stars of the flag were arranged in 1912 and in 1959.
51. Research What is the correct arrangement of stars on the U.S. flag? Explain why the arrangement is not rectangular.

Determine whether each statement is sometimes, always, or never true. Explain your reasoning.
52. A number that is divisible by 3 is also divisible by 6 .
53. A number that has 10 as a factor is not divisible by 5 .
54. A number that has a factor of 10 is an even number.
55. MONEY The homecoming committee can spend $\$ 144$ on refreshments for the dance. Soft drinks cost $\$ 6$ per case, and cookies cost $\$ 4$ per bag.
a. How many cases of soft drinks can they buy with $\$ 144$?
b. How many bags of cookies can they buy with $\$ 144$?
c. Suppose they want to buy approximately the same amounts of soft drinks and cookies. How many of each could they buy with $\$ 144$?
56. CRITICAL THINKING Write a number that satisfies each set of conditions.
a. the greatest three-digit number that is not divisible by 2,3 , or 10
b. the least three-digit number that is not divisible by $2,3,5$, or 10
57. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.

How are side lengths of rectangles related to factors?
Include the following in your answer:

- a drawing of a rectangle with its dimensions and area labeled, and
- a definition of factors and a description of the relationship between rectangle dimensions and factor pairs of a number.

Standardized Test Practice
58. Which number is divisible by 3 ?
(A) 133
(B) 444
(C) 53
(D) 250
59. Determine which expression is not a monomial.
(A) $6 d$
(B) $6 d \cdot 5$
(C) $6 d-5$
(D) 5

Maintain Your Skills

Mixed Review GEOMETRY Find the perimeter and area of each rectangle. (Lesson 3-7)
60.

61.

ALGEBRA Translate each sentence into an equation. Then find each number. (Lesson 3-6)
62. Eight more than twice a number is -16 .
63. Two less than 5 times a number equals 3 .

ALGEBRA Solve each equation. Check your solution. (Lesson 3-5)
64. $2 x-1=9$
65. $14=8+3 n$
66. $7+\frac{k}{5}=-1$

Getting Ready for

 the Next LessonPREREQUISITE SKILL Find each product.
(To review multiplying integers, see Lesson 2-4.)
67. $4 \cdot 4 \cdot 4$
68. $10 \cdot 10 \cdot 10 \cdot 10$
69. $(-3)(-3)(-3)$
70. $(-2)(-2)(-2)(-2)$
71. $8 \cdot 8 \cdot 6 \cdot 6$
72. $(2)(2)(-5)(-5)(-5)$

4-2 Powers and Exponents

What You'll Learn

- Write expressions using exponents.
- Evaluate expressions containing exponents.

Vocabulary

- base
- exponent
- power
- standard form
- expanded form

Study Tip

First Power
When a number is raised to the first power, the exponent is usually omitted. So 2^{1} is written as 2 .

Why are exponents important in comparing computer data?

Computer data are measured in small units called bytes. These units are based on factors of 2 .
a. Write 16 as a product of factors of 2. How many factors are there?
b. How many factors of 2 form the product 128 ?
c. One megabyte is 1024 kilobytes. How many factors of 2 form the product 1024 ?

Personal Computers

Source: www.islandnet.com

EXPONENTS An expression like $2 \times 2 \times 2 \times 2$ can be written as a power. A power has two parts, a base and an exponent. The expression $2 \times 2 \times 2 \times 2$ can be written as 2^{4}.

The table below shows how to write and read powers with positive exponents.

Powers	Words	Repeated Factors
2^{1}	2 to the first power	2
2^{2}	2 to the second power or 2 squared	$2 \cdot 2$
2^{3}	2 to the third power or 2 cubed	$2 \cdot 2 \cdot 2$
2^{4}	2 to the fourth power or 2 to the fourth	$2 \cdot 2 \cdot 2 \cdot 2$
\vdots	\vdots	\vdots
2^{n}	2 to the nth power or 2 to the nth	$\underbrace{2 \cdot 2 \cdot 2 \cdot \ldots \cdot 2}_{n \text { factors }}$

Any number, except 0 , raised to the zero power is defined to be 1 .

$$
1^{0}=1 \quad 2^{0}=1 \quad 3^{0}=1 \quad 4^{0}=1 \quad 5^{0}=1 \quad x^{0}=1, x \neq 0
$$

Study Tip

Common Misconception $(-9)^{2}$ is not the same as -9^{2}. $-9^{2}=-1 \cdot 9^{2}$

Example 1 Write Expressions Using Exponents

Write each expression using exponents.
a. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

The base is 3 . It is a factor 5 times, so the exponent is 5 .
$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{5}$
c. $(-9)(-9)$

The base is -9 . It is a factor 2 times, so the exponent is 2 .
$(-9)(-9)=(-9)^{2}$
b. $t \cdot t \cdot t \cdot t$

The base is t. It is a factor 4 times, so the exponent is 4 . $t \cdot t \cdot t \cdot t=t^{4}$
d. $(x+1)(x+1)(x+1)$

The base is $x+1$. It is a factor 3 times, so the exponent is 3 . $(x+1)(x+1)(x+1)=(x+1)^{3}$
e. $7 \cdot a \cdot a \cdot a \cdot b \cdot b$

First, group the factors with like bases. Then, write using exponents. $7 \cdot a \cdot a \cdot a \cdot b \cdot b=7 \cdot(a \cdot a \cdot a) \cdot(b \cdot b)$

$$
=7 a^{3} b^{2} \quad a \cdot a \cdot a=a^{3} \text { and } b \cdot b=b^{2}
$$

Concept Check How would you write ten to the fourth using an exponent?

The number 13,548 is in standard form because it does not contain exponents. You can use place value and exponents to express a number in expanded form.

Example 2 Use Exponents in Expanded Form

Express 13,048 in expanded form.

Step 1 Use place value to write the value of each digit in the number.

$$
\begin{aligned}
13,048 & =10,000+3000+0+40+8 \\
& =(1 \times 10,000)+(3 \times 1000)+(0 \times 100)+(4 \times 10)+(8 \times 1)
\end{aligned}
$$

Step 2 Write each place value as a power of 10 using exponents.

$$
\begin{array}{r}
13,048=\left(1 \times 10^{4}\right)+\left(3 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+\left(8 \times 10^{0}\right) \\
\text { Recall that } 10^{0}=1 .
\end{array}
$$

EVALUATE EXPRESSIONS Since powers are forms of multiplication, they need to be included in the rules for order of operations.

Concept Summary		Order of Operations
	Words	Example
Step 1	Simplify the expressions inside grouping symbols. Start with the innermost grouping symbols.	
Step 2	Evaluate all powers. Step 3	Do all multiplications or divisions in order from left to right.
Step 4	Do all additions or subtractions in order from left to right.	$=49+5 \cdot 2=7^{2}+5 \cdot 2$
	$=49+10$	

Study Tip

Exponents
An exponent goes with the
number, variable, or quantity in parentheses immediately preceding it.

- In 5• 3^{2}, 3 is squared. $5 \cdot 3^{2}=5 \cdot 3 \cdot 3$
$\ln (5 \cdot 3)^{2}$, $(5 \cdot 3)$ is squared. $(5 \cdot 3)^{2}=(5 \cdot 3)(5 \cdot 3)$

Example 3 Evaluate Expressions

Evaluate each expression.
a. 2^{3}

$$
\begin{aligned}
2^{3} & =2 \cdot 2 \cdot 2 & & 2 \text { is a factor } 3 \text { times. } \\
& =8 & & \text { Multiply. }
\end{aligned}
$$

b. $y^{2}+5$ if $y=-3$

$$
\begin{aligned}
y^{2}+5 & =(-3)^{2}+5 & & \text { Replace } y \text { with }-3 . \\
& =(-3)(-3)+5 & & -3 \text { is a factor two times. } \\
& =9+5 & & \text { Multiply. } \\
& =14 & & \text { Add. }
\end{aligned}
$$

c. $3(x+y)^{4}$ if $x=-2$ and $y=1$
$3(x+y)^{4}=3(-2+1)^{4} \quad$ Replace x with -2 and y with 1 .
$=3(-1)^{4} \quad$ Simplify the expression inside the parentheses.
$=3(1) \quad$ Evaluate $(-1)^{4}$.
$=3 \quad$ Simplify.

Check for Understanding

Concept Check

1. OPEN ENDED Use exponents to write a numerical expression and an algebraic expression in which the base is a factor 5 times.
2. Explain how the expression 6 cubed is repeated multiplication.
3. Make a conjecture about the value of 1^{n} and the value of $(-1)^{n}$ for any value of n. Explain.

Guided Practice Write each expression using exponents.

4. $n \cdot n \cdot n$
5. $7 \cdot 7$
6. $3 \cdot 3 \cdot x \cdot x \cdot x \cdot x$
7. Express 2695 in expanded form.

ALGEBRA Evaluate each expression.
8. 2^{4}
9. $x^{3}-3$ if $x=-2$
10. $5(y-1)^{2}$ if $y=4$

Application
11. SOUND Fireworks can easily reach a sound of 169 decibels, which can be dangerous if prolonged. Write this number using exponents and a smaller base.

Practice and Apply

Write each expression using exponents.
12. $4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$
13. 6
14. $(-5)(-5)(-5)$
15. $(-8)(-8)(-8)(-8)$
16. $k \cdot k$
17. $(-t)(-t)(-t)$
18. $(r \cdot r)(r \cdot r)$
19. $m \cdot m \cdot m \cdot m$
21. $2 \cdot x \cdot x \cdot y \cdot y$
22. $7 \cdot 7 \cdot 7 \cdot n \cdot n \cdot n \cdot n$
23. $9 \cdot(p+1) \cdot(p+1)$

Homework Help	
For	See Exercises
Examples	
$12-23,43,47$	1
$24-27$	2
$28-42$	3
Extra Practice	
See page 731.	

Express each number in expanded form.
24. 452
25. 803
26. 6994
27. 23,781

ALGEBRA Evaluate each expression if $a=2, b=4$, and $c=-3$.
28. 7^{2}
29. 10^{3}
30. $(-9)^{3}$
31. $(-2)^{5}$
32. b^{4}
33. c^{4}
34. $5 a^{4}$
35. $a c^{3}$
36. $b^{0}-10$
37. $c^{2}+a^{2}$
38. $3 a+b^{3}$
39. $a^{2}+3 a-1$
40. $b^{2}-2 b+6$
41. $3(b-1)^{4}$
42. $2(3 c+7)^{2}$
43. TRAVEL Write each number in the graphic as a power.
44. Write 7 cubed times x squared as repeated multiplication.
45. Write negative eight, cubed using exponents, as a product of repeated factors, and in standard form.
46. Without using a calculator, order $96,96^{2}, 96^{10}, 96^{5}$, and 96^{0} from least to greatest. Explain your reasoning.

More About.

History
The so noodles are about a yard long and as thin as a piece of yarn. Very few chefs still know how to make these noodles.
Source: The Mathematics Teacher
47. NUMBER THEORY

Explain whether the square
 of any nonzero number is sometimes, always, or never a positive number.
48. BIOLOGY A man burns approximately 121 Calories by standing for an hour. A woman burns approximately 100 Calories per hour when standing. Write each of these numbers as a power with an exponent other than 1.

HISTORY For Exercises 49-51, use the following information.
In an ancient Chinese tradition, a chef stretches and folds dough to make long, thin noodles called so. After the first fold, he makes 2 noodles. He stretches and folds it a second time to make 4 noodles. Each time he repeats this process, the number of noodles doubles.
49. Use exponents to express the number of noodles after each of the first five folds.
50. Legendary chefs have completed as many as thirteen folds. How many noodles is this?
51. If the noodles are laid end to end and each noodle is 5 feet long, after how many of these folds will the length be more than a mile?

Replace each \bullet with $<,>$, or $=$ to make a true statement.
52. $3^{7} \bullet 7^{3}$
53. $2^{4} \bullet 4^{2}$
54. $6^{3} \bigcirc 4^{4}$

GEOMETRY For Exercises 55-57, use the cube below.
55. The surface area of a cube is the sum of the areas of the faces. Use exponents to write an expression for the surface area of the cube.
56. The volume of a cube, or the amount of space that it occupies, is the product of the length, width, and height. Use exponents to write an expression for the volume of the cube.
57. If you double the length of each edge of the cube, are the surface area and volume also doubled? Explain.
58. CRITICAL THINKING Suppose the length of a side of a square is n units and the length of an edge of a cube is n units.
a. If all the side lengths of a square are doubled, are the perimeter and the area of the square doubled? Explain.
b. If all the side lengths of a square are tripled, show that the area of the new square is 9 times the area of the original square.
c. If all the edge lengths of a cube are tripled, show that the volume of the new cube is 27 times the volume of the original cube.
59. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.
Why are exponents important in comparing computer data?
Include the following in your answer:

- an explanation of how factors of 2 describe computer memory, and
- a sentence explaining the advantage of using exponents.

Online Research Data Update How many megabytes of memory are common today? Visit wwww.pre-alg.com/data_update to learn more.

Standardized Test Practice
(B) (B)
60. Write ten million as a power of ten.
(A) 10^{5}
(B) 10^{6}
(C) 10^{7}
(D) 10^{8}
61. What value of x will make $256=2^{x}$ true?
(A) 7
(B) 8
(C) 9
(D) 128

Maintain Your Skills

Mixed Review State whether each number is divisible by 2, 3, 5, 6, or $\mathbf{1 0}$. (Lesson 4-1)
62. 128
63. 370
64. 945
65. METEOROLOGY A tornado travels 300 miles in 2 hours. Use the formula $d=r t$ to find the tornado's speed in miles per hour. (Lesson 3-7)

ALGEBRA Solve each equation. Check your solution. (Lesson 3-5)
66. $2 x+1=7$
67. $16=5 k-4$
68. $\frac{n}{3}+8=6$
69. ALGEBRA Simplify $4(y+2)-y$. (Lesson 3-2)

Getting Ready for the Next Lesson

PREREQUISITE SKILL List all the factors for each number.
(To review factoring, see Lesson 4-1.)
70. 11
71. 5
72. 9
73. 16
74. 19
75. 35

Base 2

Activity

A computer contains a large number of tiny electronic switches that can be turned ON or OFF. The digits 0 and 1, also called bits, are the alphabet of computer language. This binary language uses a base two system of numbers.

$\begin{aligned} 10110_{2} & =\underbrace{\left(1 \times 2^{4}\right)}_{16}+\underbrace{\left(0 \times 2^{3}\right)}_{0}+\underbrace{\left(1 \times 2^{2}\right)}_{4}+\underbrace{\left(1 \times 2^{1}\right)}_{2}+\underbrace{\left(0 \times 2^{0}\right)}_{0} \\ & =22\end{aligned}$
So, $10110_{2}=22_{10}$ or 22 .
You can also reverse the process and express base ten numbers as equivalent numbers in base two.

Express the decimal number 13 as a number in base two.

Step 1 Make a base 2 place-value chart. Find the greatest factor of 2 that is less than 13. Place a 1 in that place value.
Step 2 Subtract $13-8=5$. Now find the greatest factor of 2 that is less than 5 . Place a 1 in that place value.
Step 3 Subtract 5-4=1. Place a 1 in that place value.
Step 4 There are no factors of 2 left, so place a 0 in any unfilled spaces.

	1			
$\mathbf{1 6}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

1 1 $\mathbf{1 6}$ $\mathbf{8}$ $\mathbf{4}$ $\mathbf{2}$ $\mathbf{1}$ 1 1 0 1 $\mathbf{1 6}$ $\mathbf{8}$ $\mathbf{4}$ $\mathbf{2}$ $\mathbf{1}$

So, 13 in the base 10 system is equal to 1101 in the base 2 system. Or, $13=1101_{2}$.

Exercises

1. Express 1011_{2} as an equivalent number in base 10 .

Express each base 10 number as an equivalent number in base 2.
2. 6
3. 9
4. 15
5. 21

Extend the Activity

6. The first five place values for base 5 are shown. Any digit from 0 to 4 can

625	125	25	5	1

7. OPEN ENDED Write 314 as an equivalent number in a base other than 2,5 , or 10 . Include a place-value chart.
8. OPEN ENDED Choose a base 10 number and write it as an equivalent number in base 8. Include a place-value chart.

4-3 Prime Factorization

What Youill Learn

- Write the prime factorizations of composite numbers.

Factor monomials.

Vocabulary

prime number - composite number - prime factorization

- factor tree
- factor

Reading Math

Composite

Everyday Meaning: materials that are made up of many substances Math Meaning: numbers having many factors

PRIME NUMBERS AND COMPOSITE NUMBERS A prime number is a whole number that has exactly two factors, 1 and itself. A composite number is a whole number that has more than two factors. Zero and 1 are neither prime nor composite.

Example 1 Identify Numbers as Prime or Composite

a. Determine whether 19 is prime or composite.

Find factors of 19 by listing the whole number pairs whose product is 19 .
$19=1 \times 19$
The number 19 has only two factors. Therefore, 19 is a prime number.

Study Tip

Mental Math To determine whether a number is prime or composite, you can mentally use the rules for divisibility rather than listing factors.
b. Determine whether 28 is prime or composite.

Find factors of 28 by listing the whole number pairs whose product is 28 .
$28=1 \times 28$
$28=2 \times 14$
$28=4 \times 7$
The factors of 28 are $1,2,4,7,14$, and 28 . Since the number has more than two factors, it is composite.

When a composite number is expressed as the product of prime factors, it is called the prime factorization of the number. One way to find the prime factorization of a number is to use a factor tree.

Both trees give the same prime factors, except in different orders. There is exactly one prime factorization of 24 . The prime factorization of 24 is $2 \cdot 2 \cdot 2 \cdot 3$ or $2^{3} \cdot 3$.
© Concept Check
Could a different factor tree have been used to write the prime factorization of 24 ? If so, would the result be the same?

Example 2 Write Prime Factorization

Write the prime factorization of 36 .

The factorization is complete because 2 and 3 are prime numbers.
The prime factorization of 36 is $2 \cdot 2 \cdot 3 \cdot 3$ or $2^{2} \cdot 3^{2}$.

Study Tip

Remainders If you get a remainder when using the cake method, choose a different prime number to divide the quotient.

ALGEBRA CONNECTION

You can also use a strategy involving division called the cake method to find a prime factorization. The prime factorization of 210 is shown below using the cake method.

Step 1

Begin with the smallest prime that is a factor of 210, in this case, 2. Divide 210 by 2.

$$
\begin{array}{rlll}
\frac{35}{105} \\
2 \longdiv { 1 0 5 } & \rightarrow & 3 \longdiv { 5 5 } \\
2 \longdiv { 2 1 0 5 } \\
2 \longdiv { 2 1 0 } & & 2 \longdiv { 2 1 0 }
\end{array}
$$

The prime factorization of 210 is $2 \cdot 3 \cdot 5 \cdot 7$. Multiply to check the result.

FACTOR MONOMIALS To factor a number means to write it as a product of its factors. A monomial can also be factored as a product of prime numbers and variables with no exponent greater than 1 . Negative coefficients can be factored using -1 as a factor.

Example 3 Factor Monomials

Factor each monomial.
a. $8 a b^{2}$

$$
\begin{array}{rlrl}
8 a b^{2} & =2 \cdot 2 \cdot 2 \cdot a \cdot b^{2} & & 8=2 \cdot 2 \cdot 2 \\
& =2 \cdot 2 \cdot 2 \cdot a \cdot b \cdot b & a \cdot b^{2}=a \cdot b \cdot b
\end{array}
$$

b. $-30 x^{3} y$

$$
\begin{array}{rll}
-30 x^{3} y & =-1 \cdot 2 \cdot 3 \cdot 5 \cdot x^{3} \cdot y & -30=-1 \cdot 2 \cdot 3 \cdot 5 \\
& =-1 \cdot 2 \cdot 3 \cdot 5 \cdot x \cdot x \cdot x \cdot y & x^{3} \cdot y=x \cdot x \cdot x \cdot y
\end{array}
$$

Check for Understanding

Concept Check 1. Explain the difference between a prime and composite number.

2. OPEN ENDED Write a 2-digit number with prime factors that include 2 and 3.
3. FIND THE ERROR Cassidy and Francisca each factored 88.

$$
88=4 \cdot 2 \cdot 11
$$

Francisca
11
$2 \longdiv { 2 2 }$
2 $\longdiv { 4 4 }$
$2 \longdiv { 8 8 }$
$88=2 \cdot 2 \cdot 2 \cdot 11$

Who is correct? Explain your reasoning.

Guided Practice Determine whether each number is prime or composite.
4. 7
5. 23
6. 15

Write the prime factorization of each number. Use exponents for repeated factors.
7. 18
8. 39
9. 50

ALGEBRA Factor each monomial.
10. $4 c^{2}$
11. $5 a^{2} b$
12. $-70 x y z$

Application
13. NUMBER THEORY One mathematical conjecture that is unproved states that there are infinitely many twin primes. Twin primes are prime numbers that differ by 2 , such as 3 and 5 . List all the twin primes that are less than 50.

Practice and Apply

Homework Help

For Exercises	See Examples
$14-21$	1
$22-29$	2
$30-41$	3

Determine whether each number is prime or composite.
14. 21
15. 33
16. 23
17. 70
18. 17
19. 51
20. 43
21. 31

Write the prime factorization of each number. Use exponents for repeated factors.
22. 26
23. 81
24. 66
25. 63
26. 56
27. 100
28. 392
29. 110

ALGEBRA Factor each monomial.
30. $14 w$
31. $9 t^{2}$
32. $-7 c^{2}$
33. $-25 z^{3}$
34. $20 s t$
35. $-38 m n p$
36. $28 x^{2} y$
37. $21 g h^{3}$
38. $13 q^{2} r^{2}$
39. $64 n^{3}$
40. $-75 a b^{2}$
41. $-120 r^{2} s t^{3}$
42. Is the value of $n^{2}-n+41$ prime or composite if $n=3$?
43. OPEN ENDED Write a monomial whose factors include $-1,5$, and x.
44. TECHNOLOGY Mersenne primes are prime numbers in the form $2^{n}-1$. In 2001, a computer programmer used special software to discover the largest prime number so far, $2^{13,466,917}-1$. Write the prime factorization of each number, or write prime if the number is a Mersenne prime.
a. $2^{5}-1$
b. $2^{6}-1$
c. $2^{7}-1$
d. $2^{8}-1$
45. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.
How can models be used to determine whether numbers are prime?
Include the following in your answer:

- the number of rectangles that can be drawn to represent prime and composite numbers, and
- an explanation of how one model can show that a number is not prime.

Standardized Test Practice
46. CRITICAL THINKING Find the prime factors of these numbers that are divisible by 12 : $12,60,84,132$, and 180 . Then, write a rule to determine when a number is divisible by 12 .
47. Which table of values represents the following rule?

Add the input number to the square of the input number.

(A) | Input (x) | Output (y) |
| :---: | :---: |
| 0 | 1 |
| 2 | 3 |
| 4 | 5 |

(C)

Input (x)	Output (y)
1	2
2	6
4	20

(B) | Input (x) | Output (y) |
| :---: | :---: |
| 1 | 1 |
| 2 | 6 |
| 4 | 8 |

(D) | Input (x) | Output (y) |
| :---: | :---: |
| 1 | 2 |
| 2 | 4 |
| 4 | 8 |

48. Determine which number is not a prime factor of 70 .
(A) 2
(B) 5
(C) 7
(D) 10

Maintain Your Skills

Mixed Review
49. Write $(-5) \cdot(-5) \cdot(-5) \cdot h \cdot h \cdot k$ using exponents. (Lesson 4-2)

Determine whether each expression is a monomial. (Lesson 4-1)
50. 14cd
51. -5
52. $x-y$
53. $3(1+3 r)$

ALGEBRA Solve each equation. Check your solution. (Lesson 3-4)
54. $\frac{n}{8}=-4$
55. $2 x=-18$
56. $30=6 n$
57. $-7=\frac{y}{4}$

Getting Ready for
the Next Lesson
PREREQUISITE SKILL Use the Distributive Property to rewrite each expression. (To review the Distributive Property, see Lesson 3-1.)
58. $2(n+4)$
59. $5(x-7)$
60. $-3(t+4)$
61. $(a+6) 10$
62. $(b-3)(-2)$
63. $8(9-y)$

Practice Quiz 1

Lessons 4-1 through 4-3

Use divisibility rules to determine whether each number is divisible by $2,3,5$,
6, or 10. (Lesson 4-1)

1. 105
2. 270
3. 511
4. 1368
5. ALGEBRA Evaluate $b^{2}-4 a c$ if $a=-1, b=5$, and $c=3$. (Lesson 4-2)
6. LITERATURE In a story, a knight received a reward for slaying a dragon. He received 1 cent on the first day, 2 cents on the second day, 4 cents on the third day, and so on, continuing to double the amount for 30 days. (Lesson 4-2)
a. Express his reward on each of the first three days as a power of 2 .
b. Express his reward on the 8th day as a power of 2 . Then evaluate.

Factor each monomial. (Lesson 4-3)
7. $77 x$
8. $18 s t$
9. $-23 n^{3}$
10. $30 c d^{2}$

What Youll Learn

- Find the greatest common factor of two or more numbers or monomials.
- Use the Distributive Property to factor algebraic expressions.

Vocabulary

- Venn diagram - greatest common factor

Study Tip

Choosing a
Method
To find the GCF of two or more numbers, it is easier to

- list the factors if the numbers are small, or use prime factorization if the numbers are large.

How can a diagram be used to find the greatest common factor?

A Venn diagram shows the relationships among sets of numbers or objects by using overlapping circles in a rectangle.

The Venn diagram at the right shows the prime factors of 12 and 20 . The common prime factors are in both circles.
a. Which numbers are in both circles?
b. Find the product of the numbers that are in both circles.
c. Is the product also a factor of 12 and 20?
d. Make a Venn diagram showing the prime factors of 16 and 28. Then use it to find the common factors of the numbers.

GREATEST COMMON FACTOR Often, numbers have some of the same factors. The greatest number that is a factor of two or more numbers is called the greatest common factor (GCF). Below are two ways to find the GCF of 12 and 20 .

Example 1 Find the GCF

Find the GCF of 12 and 20.

Method 1 List the factors.
factors of $12: 1,2,3$ (4.) 6,12

The greatest common factor of 12 and 20 is 4 .
Method 2 Use prime factorization.
$12=$
$20=$
2
2 $\cdot \cdot \begin{aligned} & 2 \\ & 2\end{aligned} \cdot 3 \longleftarrow \begin{aligned} & \text { Common prime factors } \\ & \text { of } 12 \text { and } 20: 2,2\end{aligned}$
The GCF is the product of the common prime factors.
$2 \cdot 2=4$
Again, the GCF of 12 and 20 is 4.

Study Tip

Writing Prime Factors
Try to line up the common prime factors so that it is easier to circle them.

Track and Field In some events such as sprints and the long jump, if the wind speed is greater than 2 meters per second, then the time or mark cannot be considered for record purposes.
Source: www.encarta.msn.com

Example 2 Find the GCF

Find the GCF of each set of numbers.
a. 30, 24

First, factor each number completely. Then circle the common factors.

The GCF of 30 and 24 is $2 \cdot 3$ or 6 .
b. $54,36,45$
$54=2 \cdot$
$36=2 \cdot 2 \cdot\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right] \cdot \begin{aligned} & \text { The common } \\ & \text { prime factors }\end{aligned}$
are 3 and 3.

The GCF is $3 \cdot 3$ or 9 .

Example 3 Use the GCF to Solve Problems

TRACK AND FIELD There are 208 boys and 240 girls participating in a field day competition.
a. What is the greatest number of teams that can be formed if each team has the same number of girls and each team has the same number of boys?

Find the GCF of 208 and 240.

The greatest common factor of 208 and 240 is $2 \cdot 2 \cdot 2 \cdot 2$ or 16 .
So, 16 teams can be formed.
b. How many boys and girls will be on each team?
$208 \div 16=13$
$240 \div 16=15$
So, each team will have 13 boys and 15 girls.

FACTOR ALGEBRAIC EXPRESSIONS You can also find the GCF of two or more monomials by finding the product of their common prime factors.

Example 4 Find the GCF of Monomials

Find the GCF of $16 x y^{2}$ and $30 x y$.
Completely factor each expression.
$16 x y^{2}=\left(\begin{array}{l}2 \\ 2 \\ 30 x y\end{array} \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot\left[\begin{array}{l}x \\ x\end{array}\right) \cdot\left(\begin{array}{l}y \\ y\end{array}\right] \cdot y \quad\right.$ Circle the common factors.
The GCF of $16 x y^{2}$ and $30 x y$ is $2 \cdot x \cdot y$ or $2 x y$.

In Lesson 3-1, you used the Distributive Property to rewrite $2(x+3)$ as $2 x+6$. You can also use this property to factor an algebraic expression such as $2 x+6$.

Example 5 Factor Expressions

Factor $2 x+6$.

First, find the GCF of $2 x$ and 6 .
$2 x=2 \cdot x$
$6=2 \cdot 3$ The GCF is 2 .
Now write each term as a product of the GCF and its remaining factors.
$2 x+6=2(x)+2(3)$

$$
=2(x+3) \quad \text { Distributive Property }
$$

So, $2 x+6=2(x+3)$.

Concept Check which property allows you to factor $3 x+9$?

Check for Understanding

1. Explain how to find the greatest common factor of two or more numbers.
2. OPEN ENDED Name two different numbers whose GCF is 12 .
3. FIND THE ERROR Christina and Jack both found the GCF of $2 \cdot 3^{2} \cdot 11$ and $2^{3} \cdot 5 \cdot 11$.
Christina

$2 \cdot 3^{2} \cdot(11$
$2^{3} \cdot 5 \cdot(11$

$G C F=11$

Who is correct? Explain your reasoning.

Guided Practice Find the GCF of each set of numbers or monomials.

4. 6,8
5. 21,45
6. 16,56
7. 28,42
8. 7,30
9. 108,144
10. $12,24,36$
11. $14 n, 42 n^{2}$
12. $36 a^{3} b, 56 a b^{2}$

Factor each expression.
13. $3 n+9$
14. $t^{2}+4 t$
15. $15+20 x$

Application
16. PARADES In the parade, 36 members of the color guard are to march in front of 120 members of the high school marching band. Both groups are to have the same number of students in each row. Find the greatest number of students in each row.

Practice and Apply

Homework Help

For Exercises	See Examples
$17-34$	1,2
$35-42$	4
$44-52$	5
53,54	3
Extra Practice	
See page 731.	

Find the GCF of each set of numbers or monomials.
17. 12,8
18. 3,9
19. 24,40
20. 21,14
21. 20,30
22. 12,18
23. 18,45
24. 22,21
25. 16,40
26. 42,56
27. 30,35
28. 12,60
29. 116, 100
30. 135,315
31. $9,15,24$
32. $20,21,25$
33. $20,28,36$
34. $66,90,150$
35. $12 x, 40 x^{2}$
36. $18,45 \mathrm{mn}$
37. $4 s t, 10$ s
38. $5 a b, 6 b^{2}$
39. $14 b, 56 b^{2}$
40. $30 a^{3} b^{2}, 24 a^{2} b$
41. What is the greatest common factor of $32 m n^{2}, 16 n$, and $12 n^{3}$?
42. Name the GCF of $15 v^{2}, 70 v w$, and $36 w^{2}$.
43. Name two monomials whose GCF is $2 x$.

Factor each expression.
44. $2 x+8$
45. $3 r+12$
46. $8+32 a$
47. $6+3 y$
48. $9+3 t$
49. $14+21 c$
50. $k^{2}+5 k$
51. $4 y-16$
52. $5 n-10$
53. PATTERNS Consider the pattern $7,14,21,28,35, \ldots$.
a. Find the GCF of the terms in the pattern. Explain how you know.
b. Write the next two terms in the pattern.
54. CARPENTRY Tamika is helping her father make shelves to store her sports equipment in the garage. How many shelves measuring 12 inches by 16 inches can be cut from a 48 -inch by 72 -inch piece of plywood so that there is no waste?
55. DESIGN Lauren is covering the surface of an end table with equal-sized ceramic tiles. The table is 30 inches long and 24 inches wide.
a. What is the largest square tile that Lauren can use and not have to cut any tiles?
b. How many tiles will Lauren need?

Standardized Test Practice
56. HISTORY The Nine Chapters on the Mathematical Art is a Chinese math book written during the first century. It describes a procedure for finding the greatest common factors. Follow each step below to find the GCF of 86 and 110.
a. Subtract the lesser number, a, from the greater number, b.
b. If the result in part \mathbf{a} is a factor of both numbers, it is the GCF. If the result is not a factor of both numbers, subtract the result from a or subtract a from the result so that the difference is a positive number.
c. Continue subtracting and checking the results until you find a number that is a factor of both numbers.
57. CRITICAL THINKING Can the GCF of a set of numbers be equal to one of the numbers? Give an example or a counterexample to support your answer.
58. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.

How can a diagram be used to find the greatest common factor?
Include the following in your answer:

- a description of how a Venn diagram can be used to display the prime factorization of two or more numbers, and
- the part of a Venn diagram that is used to find the greatest common factor.

59. Write $6 y+21$ in factored form.
(A) $6(y+3)$
(B) $2(3 y+7)$
(C) $3(y+7)$
(D) $3(2 y+7)$
60. Find the GCF of $42 x^{2} y$ and $38 x y^{2}$.
(A) $2 x^{2} y$
(B) $3 x y$
(C) $2 x y$
(D) $6 x^{2} y^{2}$

Extending the Lesson

Two numbers are relatively prime if their only common factor is 1 . Determine whether the numbers in each pair are relatively prime. Write yes or no.
61. 7 and 8
62. 13 and 11
63. 27 and 18
64. 20 and 25
65. 22 and 23
66. 8 and 12

Maintain Your Skills

Mixed Review ALGEBRA Factor each monomial. (Lesson 4-3)
67. $9 n$
68. $15 x^{2}$
69. $-5 j k$
70. $22 a b^{3}$
71. ALGEBRA Evaluate $7 x^{2}+y^{3}$ if $x=-2$ and $y=4$. (Lesson 4-2)

Find each quotient. (Lesson 2-5)
72. $69 \div 23$
73. $48 \div(-8)$
74. $-24 \div(-12)$
75. $-50 \div 5$

Getting Ready for
 the Next Lesson

PREREQUISITE SKILL Find each equivalent measure.
(To review converting measurements, see pages 718-721.)
76. $1 \mathrm{ft}=$? in.
77. $1 \mathrm{yd}=$? in.
78. $1 \mathrm{lb}=$? oz
79. 1 day $=$? h
80. $1 \mathrm{~m}=$? cm
81. $1 \mathrm{~kg}=$? g

Simplifying Algebraic Fractions

What You'll Learn

- Simplify fractions using the GCF.
- Simplify algebraic fractions.

Vocabulary

- simplest form - algebraic fraction

Study Tip

Use a Venn Diagram To simplify fractions, let one circle in a Venn diagram represent the numerator and let another circle represent the denominator. The number or product of numbers in the intersection is the GCF.

How are simplified fractions useful in representing measurements?

You can use a fraction to compare a part of something to a whole. The figures below show what part 15 minutes is of 1 hour.

$\frac{3}{12}$ is shaded.

$\frac{1}{4}$ is shaded.
a. Are the three fractions equivalent? Explain your reasoning.
b. Which figure is divided into the least number of parts?
c. Which fraction would you say is written in simplest form? Why?

SIMPLIFY NUMERICAL FRACTIONS A fraction is in simplest form

 when the GCF of the numerator and the denominator is 1 .> Fractions in Simplest Form

$$
\frac{1}{4}, \frac{1}{3}, \frac{3}{4}, \frac{17}{50}
$$

Fractions not in
Simplest Form

$$
\frac{3}{12}, \frac{15}{60}, \frac{6}{8}, \frac{5}{20}
$$

One way to write a fraction in simplest form is to write the prime factorization of the numerator and the denominator. Then divide the numerator and denominator by the GCF.

Example 1 Simplify Fractions

 Write $\frac{9}{12}$ in simplest form.$$
\begin{aligned}
9 & =3 \cdot \\
12 & =2 \cdot 2 \cdot\binom{3}{3}
\end{aligned} \begin{aligned}
& \text { Factor the numerator. } \\
& \text { Factor the denominator. }
\end{aligned}
$$

The GCF of 9 and 12 is 3 .

$$
\begin{aligned}
\frac{9}{12} & =\frac{9 \div 3}{12 \div 3} & & \begin{array}{l}
\text { Divide the numerator and the } \\
\text { denominator by the GCF. }
\end{array} \\
& =\frac{3}{4} & & \text { Simplest form }
\end{aligned}
$$

The division in Example 1 can be represented in another way.

$$
\begin{array}{rlr}
\frac{9}{12} & =\frac{13 \cdot 3}{2 \cdot 2 \cdot 3} & \begin{array}{l}
\text { The slash } \\
\text { denomin } \\
1
\end{array} \\
& =\frac{3}{2 \cdot 2} \text { or } \frac{3}{4} & \text { Simplify. }
\end{array}
$$

Example 2 Simplify Fractions

Write $\frac{15}{60}$ in simplest form.

$$
\begin{array}{rlrl}
\frac{15}{60} & =\frac{\frac{1}{3} \cdot \frac{1}{5}}{2 \cdot 2 \cdot 3 \cdot 5} \\
& =\frac{\text { Divide the numerator and }}{\text { denominator by the } G C F, 3 \cdot 5 .} \\
& & & \text { Simplify. }
\end{array}
$$

Concept Check How do you know when a fraction is in simplest form?

Simplifying fractions is a useful tool in measurement.

Example 3 Simplify Fractions in Measurement

MEASUREMENT Eighty-eight feet is what part of 1 mile?

There are 5280 feet in 1 mile. Write the fraction $\frac{88}{5280}$ in simplest form.

$$
\begin{aligned}
\frac{88}{5280} & =\frac{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{21}}{2 \cdot 2 \cdot 2 \cdot 21} 12 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot \underline{1} & & \begin{array}{l}
\text { Divide the numerator and denominator } \\
\text { by the GCF, } 2 \cdot 2 \cdot 2 \cdot 11 .
\end{array} \\
& =\frac{1}{60} & & \text { Simplify. }
\end{aligned}
$$

So, 88 feet is $\frac{1}{60}$ of a mile.

Study Tip

Alternative Method You can also divide the numerator and denominator by common factors until the fraction is in simplest form.
$\frac{88}{5280}=\frac{44}{2640}$
$=\frac{22}{1320}$
$=\frac{11}{660}$ or $\frac{1}{60}$

ALGEBRA CONNECTION

SIMPLIFY ALGEBRAIC FRACTIONS A fraction with variables in the numerator or denominator is called an algebraic fraction. Algebraic fractions can also be written in simplest form.

Example 4 Simplify Algebraic Fractions

Simplify $\frac{21 x^{2} y}{35 x y}$.

$$
\begin{aligned}
\frac{21 x^{2} y}{35 x y} & =\frac{3 \cdot \frac{1}{7} \cdot x^{1} \cdot x \cdot y}{5 \cdot 7 \cdot y^{2} \cdot y} & & \begin{array}{l}
\text { Divide the numerator and } \\
\text { denominator by the GCF, } 7 \cdot x \cdot y .
\end{array} \\
& =\frac{3 x}{5} & & \text { Simplify. }
\end{aligned}
$$

Test-Taking Tip

Shortcuts You can solve some problems without much calculating if you understand the basic mathematical concepts. Look carefully at what is asked, and think of possible shortcuts for solving the problem.

Example 5 Simplify Algebraic Fractions

Multiple-Choice Test Item

Which fraction is $\frac{a b c^{3}}{a^{2} b}$ written in simplest form?
(A) $\frac{b c^{3}}{a}$
(B) $\frac{b c^{2}}{a}$
(C) $\frac{c^{3}}{a}$
(D) $\frac{c^{2}}{a}$

Read the Test Item In simplest form means that the GCF of the numerator and the denominator is 1 .

Solve the Test Item

$\frac{a b c^{3}}{a^{2} b}=\frac{a b c^{3}}{a^{2} b}$
Without factoring, you can see that the variable b will not appear in the simplified fraction. That eliminates choices A and B.

$$
\begin{aligned}
\frac{a b c^{3}}{a^{2} b} & =\frac{a^{\frac{1}{a} \cdot b^{\prime} \cdot c \cdot c \cdot c}}{a^{\prime} \cdot a \cdot b} & & \text { Factor. } \\
& =\frac{c^{3}}{a} & & \text { Multiply. }
\end{aligned}
$$

The answer is C .

Check for Understanding

Concept Check

1. Explain what it means to express a fraction in simplest form.
2. OPEN ENDED Write examples of a numerical fraction and an algebraic fraction in simplest form and examples of a numerical fraction and an algebraic fraction not in simplest form.

Guided Practice
Write each fraction in simplest form. If the fraction is already in simplest form, write simplified.
3. $\frac{2}{14}$
4. $\frac{9}{15}$
5. $\frac{5}{11}$
6. $\frac{25}{40}$
7. $\frac{64}{68}$

ALGEBRA Simplify each fraction. If the fraction is already in simplest form, write simplified.
8. $\frac{x}{x^{3}}$
9. $\frac{8 a^{2}}{16 a}$
10. $\frac{12 c}{15 d}$
11. $\frac{24}{5 k}$
12. MEASUREMENT Nine inches is what part of 1 yard?
13. Which fraction is $\frac{25 m n}{65 n}$ written in simplest form?
(A) $\frac{2 m}{6}$
(B) $\frac{5 m}{13}$
(C) $\frac{5 m}{13 n}$
(D) $\frac{25 m n}{65}$

Practice and Apply

Homework Ifelp	
For	See Examples
Exercises	$14-28$
$30-41$	1,2
$42-43$	3
Extra Practice	
See page	732.

Career Choices

Musician
Pitch is the frequency at which an instrument's string vibrates when it is struck. To correct the pitch, a musician must increase or decrease tension in the strings.

Online Research For information about a career as a musician, visit: wwww.pre-alg.com/ careers

Write each fraction in simplest form. If the fraction is already in simplest form, write simplified.
14. $\frac{3}{18}$
15. $\frac{10}{12}$
16. $\frac{15}{21}$
17. $\frac{8}{36}$
18. $\frac{17}{20}$
19. $\frac{18}{44}$
20. $\frac{16}{64}$
21. $\frac{30}{37}$
22. $\frac{34}{38}$
23. $\frac{17}{51}$
24. $\frac{51}{60}$
25. $\frac{25}{60}$
26. $\frac{36}{96}$
27. $\frac{133}{140}$
28. $\frac{765}{2023}$
29. AIRCRAFT A model of Lindbergh's Spirit of St. Louis has a wingspan of 18 inches. The wingspan of the actual airplane is 46 feet. Write a fraction in simplest form comparing the wingspan of the model and the wingspan of the actual airplane. (Hint: convert 46 feet to inches.)

ALGEBRA Simplify each fraction. If the fraction is already in simplest form, write simplified.
30. $\frac{a}{a^{4}}$
31. $\frac{y^{3}}{y}$
32. $\frac{12 m}{15 m}$
33. $\frac{40 d}{42 d}$
34. $\frac{4 k}{19 m}$
35. $\frac{8 t}{64 t^{2}}$
36. $\frac{16 n}{18 n^{2} p}$
37. $\frac{28 z^{3}}{16 z}$
38. $\frac{6 r}{15 r s}$
39. $\frac{12 c d}{19 e}$
40. $\frac{30 x^{2}}{51 x y}$
41. $\frac{17 g^{2} h}{51 g}$
42. MEASUREMENT Fifteen hours is what part of one day?
43. MEASUREMENT Ninety-six centimeters is what part of a meter?
44. MEASUREMENT Twelve ounces is what part of a pound?
(Hint: $1 \mathrm{lb}=16 \mathrm{oz}$)
45. MUSIC Musical notes C and A sound harmonious together because of their frequencies, or vibrations. The fraction that is formed by the two frequencies can be simplified, as shown below.

$$
\frac{\mathrm{C}}{\mathrm{~A}}=\frac{264}{440} \text { or } \frac{3}{5}
$$

When a fraction formed by two frequencies cannot be simplified, the notes sound like noise.

Note	Frequency (hz)
C	264
D	294
E	330
F	349
G	392
A	440
B	494
C	528

a. E and A
b. D and F
c. first C and last C
46. ANIMALS The table shows the average amount of food each animal can eat in a day and its average weight. What fraction of its weight can each animal eat per day?

Animal	Daily Amount of Food	Weight of Animal
elephant	450 lb	9000 lb
hummingbird	2 g	3 g
polar bear	25 lb	1500 lb
tiger	20 lb	500 lb

[^0]Simplifying fractions will help you determine the portion of your daily allowance of fat grams. Visit www.pre-alg.com/ webquest to continue work on your WebQuest project.

MONEY For Exercises 47-49, use the graph to write each fraction in simplest form.
47. the fraction of a dollar that students in Japan save
48. the fraction of a dollar that students in the U.S. save
49. a fraction showing the amount of a dollar that students in the U.S. save compared to students in

Students' Money in the Bank
 France
50. CRITICAL THINKING Is it true that $\frac{23}{53}=\frac{2 \hat{b}}{5 \nmid \alpha}$ or $\frac{2}{5}$? Explain.
51. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.

How are simplified fractions useful in representing measurements?
Include the following in your answer:

- an explanation of how measurements represent parts of a whole, and
- examples of fractions that represent measurements.

Standardized Test Practice
(A) B C
52. Which fraction represents the shaded area written in simplest form?
(A) $\frac{9}{30}$
(B) $\frac{3}{10}$
(C) $\frac{6}{20}$
(D) $\frac{30}{100}$

53. Write $\frac{15 a b}{25 b^{2}}$ in simplest form.
(A) $\frac{3 a}{5 b}$
(B) $\frac{15 a}{25 b}$
(C) $\frac{3 a b}{5}$
(D) $\frac{15 a}{25 b^{2}}$

Maintain Your Skills

Mixed Review Find the greatest common factor of each set of numbers or monomials. (Lesson 4-4)
54. 9, 15
55. $4,12,10$
56. $40 x^{2}, 16 x$
57. $25 a, 30 b$

Determine whether each number is prime or composite. (Lesson 4-3)
58. 13
59. 34
60. 99
61. 79

ALGEBRA Solve each equation. Check your solution. (Lesson 3-3)
62. $t-18=24$
63. $30=3+y$
64. $-7=x+11$

Getting Ready for

 the Next LessonPREREQUISITE SKILL For each expression, use parentheses to group the numbers together and to group the powers with like bases together.
(To review properties of multiplication, see Lesson 1-4.)
Example: $a \cdot 4 \cdot a^{3} \cdot 2=(4 \cdot 2)\left(a \cdot a^{3}\right)$
65. $6 \cdot 7 \cdot k^{3}$
66. $s \cdot t^{2} \cdot s \cdot t$
67. $3 \cdot x^{4} \cdot(-5) \cdot x^{2}$
68. $5 \cdot n^{3} \cdot p \cdot 2 \cdot n \cdot p$

Powers

The phrase the quantity is used to indicate parentheses when reading expressions. Recall that an exponent indicates the number of times that the base is used as a factor. Suppose you are to write each of the following in symbols.

Words	Symbols	Examples (Let $x=2$.
three times χ squared	$3 x^{2}$	$\begin{array}{rlrl} 3 x^{2} & =3 \cdot 2^{2} \\ & =3 \cdot 4 \quad & & \text { Evaluate } 2^{2} . \\ & =12 \quad & \text { Multiply } 3 \cdot 4 . \end{array}$
three times x the quantity squared	$(3 x)^{2}$	$\begin{aligned} (3 x)^{2} & =(3 \cdot 2)^{2} \\ & =6^{2} \quad \text { Evaluate } 3 \cdot 2 . \\ & =36 \quad \text { Square } 6 . \end{aligned}$

In the expression $(3 x)^{2}$, parentheses are used to show that $3 x$ is used as a factor twice.

$$
(3 x)^{2}=(3 x)(3 x)
$$

The quantity can also be used to describe division of monomials.

Words	Symbols	Examples (Let $x=2$.
eight divided by χ squared	$\frac{8}{x^{2}}$	$\begin{aligned} \frac{8}{\chi^{2}} & =\frac{8}{2^{2}} \\ & =\frac{8}{4} \quad \text { Evaluate } 2^{2} . \\ & =2 \quad \text { Divide } 8 \div 4 . \end{aligned}$
eight divided by χ the quantity squared	$\left(\frac{8}{x}\right)^{2}$	$\begin{aligned} \left(\frac{8}{x}\right)^{2} & =\left(\frac{8}{2}\right)^{2} \\ & =4^{2} \quad \text { Evaluate } 8 \div 2 . \\ & =16 \quad \text { Square } 4 . \end{aligned}$

Reading to Learn

State how you would read each expression.

1. $4 a^{2}$
2. $(10 x)^{5}$
3. $\frac{5}{n^{3}}$
4. $\left(\frac{4}{r}\right)^{2}$
5. $(m+n)^{3}$
6. $(a-b)^{4}$
7. $a-b^{4}$
8. $\frac{a}{b^{4}}$
9. $\left(4 c^{2}\right)^{3}$
10. $\left(\frac{8}{c^{2}}\right)^{3}$

Determine whether each pair of expressions is equivalent. Write yes or no.
11. $4 a b^{5}$ and $4(a b)^{5}$
12. $(2 x)^{3}$ and $8 x^{3}$
13. $(m n)^{4}$ and $m^{4} \cdot n^{4}$
14. $c^{3} d^{3}$ and $c d^{3}$
15. $\frac{x}{y^{2}}$ and $\left(\frac{x}{y}\right)^{2}$
16. $\frac{n^{2}}{r^{2}}$ and $\left(\frac{n}{r}\right)^{2}$

Multiplying and Dividing Monomials

What Youill Learn

- Multiply monomials.
- Divide monomials.

How

are powers of monomials useful in comparing earthquake magnitudes?

For each increase on the Richter scale, an earthquake's vibrations, or seismic waves, are 10 times greater. So, an earthquake of magnitude 4 has seismic waves that are 10 times greater than that of a magnitude 3 .

Richter Scale	Times Greater than Magnitude 3 Earthquake	Written Using Powers
4	10	10^{1}
5	$10 \times 10=100$	$10^{1} \times 10^{1}=10^{2}$
6	$10 \times 100=1000$	$10^{1} \times 10^{2}=10^{3}$
7	$10 \times 1000=10,000$	$10^{1} \times 10^{3}=10^{4}$
8	$10 \times 10,000=100,000$	$10^{1} \times 10^{4}=10^{5}$

a. Examine the exponents of the factors and the exponents of the products in the last column. What do you observe?
b. Make a conjecture about a rule for determining the exponent of the product when you multiply powers with the same base. Test your rule by multiplying $2^{2} \cdot 2^{4}$ using a calculator.

MULTIPLY MONOMIALS Recall that exponents are used to show repeated multiplication. You can use the definition of exponent to help find a rule for multiplying powers with the same base.

Notice the sum of the original exponents and the exponent in the final product. This relationship is stated in the following rule.

Study Tip

Common

Misconception
When multiplying powers, do not multiply the bases. $3^{2} \cdot 3^{4}=3^{6}$, not 9^{6}

Key Concept
Product of Powers

- Words You can multiply powers with the same base by adding their exponents.
- Symbols
$a^{m} \cdot a^{n}=a^{m+n}$
- Example

Example 1 Multiply Powers

Find $7^{3} \cdot 7$.

$$
\begin{aligned}
7^{3} \cdot 7 & =7^{3} \cdot 7^{1} & & 7=7^{1} \\
& =7^{3+1} & & \text { The common base is } 7 . \\
& =7^{4} & & \text { Add the exponents. }
\end{aligned}
$$

CHECK $\quad 7^{3} \cdot 7=(7 \cdot 7 \cdot 7)(7)$

$$
=7 \cdot 7 \cdot 7 \cdot 7 \text { or } 7^{4} \sqrt{ }
$$

Concept Check Can you simplify $2^{3} \cdot 3^{3}$ using the Product of Powers rule? Explain.

ALGEBRA CONNECTION

Study Tip

Look Back
To review the
Commutative and Associative Properties of Multiplication, see Lesson 1-4.

Monomials can also be multiplied using the rule for the product of powers.

Example 2 Multiply Monomials

Find each product.
a. $x^{5} \cdot x^{2}$
$x^{5} \cdot x^{2}=x^{5+2} \quad$ The common base is x.
$=x^{7} \quad$ Add the exponents.
b. $\left(-4 n^{3}\right)\left(2 n^{6}\right)$
$\left(-4 n^{3}\right)\left(2 n^{6}\right)=(-4 \cdot 2)\left(n^{3} \cdot n^{6}\right) \quad$ Use the Commutative and Associative Properties. $=(-8)\left(n^{3+6}\right) \quad$ The common base is n.
$=-8 n^{9} \quad$ Add the exponents.

DIVIDE MONOMIALS You can also write a rule for finding quotients of powers.

$$
\begin{aligned}
\frac{2^{6}}{2^{1}} & =\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{2} \\
& =\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot \frac{1}{2}}{2} \begin{array}{l}
\text { Divide the numerator and the } \\
\text { denominator by the GCF, } 2 .
\end{array} \\
& =2^{5} \longleftarrow 5 \text { factors Simplify. }
\end{aligned}
$$

Compare the difference between the original exponents and the exponent in the final quotient. This relationship is stated in the following rule.

Key Concept

Quotient of Powers

- Words You can divide powers with the same base by subtracting their exponents.
- Symbols $\frac{a^{m}}{a^{n}}=a^{m-n}$, where $a \neq 0$
- Example $\frac{4^{5}}{4^{2}}=4^{5-2}$ or 4^{3}

Example 3 Divide Powers

Find each quotient.
a. $\frac{5^{7}}{5^{4}}$
b. $\frac{y^{5}}{y^{3}}$
$\frac{5^{7}}{5^{4}}=5^{7-4} \quad$ The common base is 5.
$\frac{y^{5}}{y^{3}}=y^{5-3} \quad$ The common base is y.
$=5^{3} \quad$ Subtract the exponents. $\quad=y^{2} \quad$ Subtract the exponents.

Concept Check Can you simplify $\frac{x^{7}}{y^{2}}$ using the Quotient of Powers rule? Why or why not?

Example 4 Divide Powers to Solve a Problem

Reading Math

How Many/How Much How many times faster indicates that division is to be used to solve the problem. If the question had said how much faster, then subtraction $\left(10^{9}-10^{8}\right)$ would have been used to solve the problem.

COMPUTERS The table compares the processing speeds of a specific type of computer in 1993 and in 1999. Find how many times faster the computer was in 1999 than in 1993.

Write a division expression to compare the speeds.
$\frac{10^{9}}{10^{8}}=10^{9-8} \quad$ Subtract the exponents.
$=10^{1}$ or 10 Simplify.

So, the computer was 10 times faster in 1999 than in 1993.

Source: The Intel Microprocessor Quick Reference Guide

Check for Understanding

Concept Check

1. State whether you could use the Product of Powers rule, Quotient of Powers rule, or neither to find $m^{5} \cdot n^{4}$. Explain.
2. Explain whether $4^{8} \cdot 4^{6}$ and $4^{4} \cdot 4^{10}$ are equivalent expressions.
3. OPEN ENDED Write a multiplication expression whose product is 5^{3}.

Guided Practice Find each product or quotient. Express using exponents.
4. $9^{3} \cdot 9^{2}$
5. $a \cdot a^{5}$
6. $\left(n^{4}\right)\left(n^{4}\right)$
7. $-3 x^{2}\left(4 x^{3}\right)$
8. $\frac{3^{8}}{3^{5}}$
9. $\frac{10^{5}}{10^{3}}$
10. $\frac{x^{3}}{x}$
11. $\frac{a^{10}}{a^{6}}$

Application 12. EARTHQUAKES In 2000, an earthquake measuring 8 on the Richter scale struck Indonesia. Two months later, an earthquake of magnitude 5 struck northern California. How many times greater were the seismic waves in Indonesia than in California? (Hint: Let 10^{8} and 10^{5} represent the earthquakes, respectively.)

Practice and Apply

Homework Help

For	
Exercises	See Examples
$13-24$	1,2
$25-36$	3
$41-44$	4

Extra Practice See page 732.

More About.

Chemistry
The pH values of different kitchen items are shown below.
Item pH
lemon juice 2
vinegar 3
tomatoes 4
baking soda 9
Source: Biology, Raven

Find each product or quotient. Express using exponents.
13. $3^{3} \cdot 3^{2}$
14. $6 \cdot 6^{7}$
15. $d^{4} \cdot d^{6}$
16. $10^{4} \cdot 10^{3}$
17. $n^{8} \cdot n$
18. $t^{2} \cdot t^{4}$
19. $9^{4} \cdot 9^{5}$
20. $a^{6} \cdot a^{6}$
21. $2 y \cdot 9 y^{4}$
22. $\left(5 r^{3}\right)\left(4 r^{4}\right)$
23. $a b^{5} \cdot 8 a^{2} b^{5}$
24. $10 x^{3} y \cdot\left(-2 x y^{2}\right)$
25. $\frac{5^{5}}{5^{2}}$
26. $\frac{8^{4}}{8^{3}}$
27. $b^{6} \div b^{3}$
28. $10^{10} \div 10^{2}$
29. $\frac{m^{20}}{m^{8}}$
30. $\frac{a^{8}}{a^{8}}$
31. $\frac{(-2)^{6}}{(-2)^{5}}$
32. $\frac{(-x)^{5}}{(-x)}$
33. $\frac{n^{3}\left(n^{5}\right)}{n^{2}}$
34. $\frac{s^{7}}{s \cdot s^{2}}$
35. $\left(\frac{k^{3}}{k}\right)\left(\frac{m^{2}}{m}\right)$
36. $\left(\frac{15}{5}\right)\left(\frac{n^{9}}{n}\right)$
37. the product of nine to the fourth power and nine cubed
38. the quotient of k to the fifth power and k squared
39. What is the product of $7^{3}, 7^{5}$, and 7 ?
40. Find $a^{4} \cdot a^{6} \div a^{2}$.

- CHEMISTRY For Exercises 41-43, use the following information.

The pH of a solution describes its acidity. Neutral water has a pH of 7. Each one-unit decrease in the pH means that the solution is 10 times more acidic. For example, a pH of 4 is 10 times more acidic than a pH of 5 .
41. Suppose the pH of a lake is 5 due to acid rain. How much more acidic is the lake than neutral water?
42. Use the information at the left to find how much more acidic vinegar is than baking soda.
43. Cola is 10^{4} times more acidic than neutral water. What is the pH value of cola?
44. LIFE SCIENCE When bacteria reproduce, they split so that one cell becomes two. The number of cells after t cycles of reproduction is 2^{t}.
a. E. coli reproduce very quickly, about every 15 minutes. If there are 100 E . coli in a dish now, how many will there be in 30 minutes?
b. How many times more E. coli are there in a population after 3 hours than there were after 1 hour?

GEOMETRY For Exercises 45 and 46, use the information in the figures.
45. How many times greater is the length of the edge of the larger cube than the smaller one?
46. How many times greater is the volume of the larger cube than the smaller one?

Volume = 2^{3} cubic units

Volume = 2^{6} cubic units

Find each missing exponent.
47. $\left(4^{\circ}\right)\left(4^{3}\right)=4^{11}$
48. $\frac{t^{\circ}}{t^{2}}=t^{14}$
49. $\frac{13^{5}}{13^{\circ}}=1$
50. CRITICAL THINKING Use the laws of exponents to show why the value of any nonzero number raised to the zero power equals 1.
51. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.

How are powers of monomials useful in comparing earthquake magnitudes?

Include the following in your answer:

- a description of the Richter scale, and
- a comparison of two earthquakes of different magnitudes by using the Quotient of Powers rule.

Standardized Test Practice
52. Multiply $7 x y$ and $x^{14} z$.
(A) $7 x^{15} y z$
(B) $7 x^{15} y$
(C) $7 x^{13} y z$
(D) $x^{15} y z$
53. Find the quotient $a^{5} \div a$.
(A) a^{5}
(B) a^{4}
(C) a^{6}
(D) a

Maintain Your Skills

Mixed Review Write each fraction in simplest form. If the fraction is already in simplest form, write simplified. (Lesson 4-5)
54. $\frac{12}{40}$
55. $\frac{20}{53}$
56. $\frac{8 n^{2}}{32 n}$
57. $\frac{6 x^{3}}{4 x^{2} y}$

Find the greatest common factor of each set of numbers or monomials.
(Lesson 4-4)
58. 36, 4
59. 18,28
60. 42,54
61. $9 a, 10 a^{3}$
62. Evaluate $|a|-|b| \cdot|c|$ if $a=-16, b=2$, and $c=3$. (Lesson 2-1)
63. ENERGY The graph shows the high temperature and the maximum amount of electricity that was used during each of fifteen summer days. Do the data show a positive, negative, or no relationship? Explain.
(Lesson 1-7)

Getting Ready for the Next Lesson

PREREQUISITE SKILL Evaluate each expression if $x=10, y=-5$, and $z=4$. Write as a fraction in simplest form.
(To review evaluating expressions, see Lesson 1-3.)
64. $\frac{1}{x}$
65. $\frac{y}{50}$
66. $\frac{z}{100}$
67. $\frac{1}{z y}$
68. $\frac{1}{x \cdot x}$
69. $\frac{1}{(z)(z)(z)}$

A Half-Life Simulation

A radioactive material such as uranium decomposes or decays in a regular manner best described as a half-life. A half-life is the time it takes for half of the atoms in the sample to decay.

Collect the Data

Step 1 Place 50 pennies heads up in a shoebox. Put the lid on the box and shake it up and down one time. This simulates one half-life.
Step 2 Open the lid of the box and remove all the pennies that are now tails up. In a table like the one at the right, record the number of pennies that remain.
Step 3 Put the lid back on the box and again
 shake the box up and down one time. This represents another half-life.
Step 4 Open the lid. Remove all the tails up pennies. Count the pennies that remain.
Step 5 Repeat the half-life of decay simulation until less than five pennies remain in the shoebox.

Analyze the Data

1. On grid paper, draw a coordinate grid in which the x-axis represents the number of half-lives and the y-axis represents the number of pennies that remain. Plot the points (number of half-lives, number of remaining pennies) from your table.
2. Describe the graph of the data.

After each half-life, you expect to remove about one-half of the pennies. So, you expect about one-half to remain. The expressions at the right represent the average number of pennies that remain if you start with 50, after one, two, and three half-lives.

Make a Conjecture

3. Use the expressions to predict how many pennies remain after three half-lives. Compare this number to the number in the table above. Explain any differences.
4. Suppose you started with 1000 pennies. Predict how many pennies would remain after three half-lives.

4-7 Negative Exponents

What You'll Learn

- Write expressions using negative exponents.

Evaluate numerical expressions containing negative exponents.

fow do negative exponents represent repeated division?

Copy the table at the right.
a. Describe the pattern of the powers in the first column. Continue the pattern by writing the next two powers in the table.
b. Describe the pattern of values in the second column. Then complete the second column.
c. Verify that the powers you wrote in part a are equal to the values that you found in part \mathbf{b}.
d. Determine how 3^{-1} should be defined.

Power	Value
2^{6}	64
2^{5}	32
2^{4}	16
2^{3}	8
2^{2}	4
2^{1}	2
$?$	$?$
$?$	$?$

ALGEBRA
CONNECTION

NEGATIVE EXPONENTS Extending the pattern at the right shows that 2^{-1} can be defined as $\frac{1}{2}$.

You can apply the Quotient of Powers rule and the definition of a power to $\frac{x^{3}}{x^{5}}$ and write a general rule about negative powers.

Method 2 Definition of Power

$$
\begin{aligned}
\frac{x^{3}}{x^{5}} & =\frac{1 \cdot x \cdot x \cdot \frac{1}{x \cdot x \cdot x \cdot x \cdot x \cdot x}}{1 \cdot 1} \\
& =\frac{1}{x \cdot x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Since $\frac{x^{3}}{x^{5}}$ cannot have two different values, you can conclude that $x^{-2}=\frac{1}{x^{2}}$. This suggests the following definition.

Key Concept

- Symbols $a^{-n}=\frac{1}{a^{n}}$, for $a \neq 0$ and any integer n
- Example $5^{-4}=\frac{1}{5^{4}}$

Example 1 Use Positive Exponents

Write each expression using a positive exponent.
a. 6^{-2}
b. x^{-5}
$6^{-2}=\frac{1}{6^{2}} \quad \begin{aligned} & \text { Definition of negative }\end{aligned}$ exponent

Definition of negative exponent

One way to write a fraction as an equivalent expression with negative exponents is to use prime factorization.

Example 2 Use Negative Exponents

Write $\frac{1}{9}$ as an expression using a negative exponent.
$\frac{1}{9}=\frac{1}{3 \cdot 3}$ Find the prime factorization of 9 .
$=\frac{1}{3^{2}} \quad$ Definition of exponent
$=3^{-2}$ Definition of negative exponent

Concept Check How can $\frac{1}{9}$ be written as an expression with a negative exponent other than 3^{-2} ?

Negative exponents are often used in science when dealing with very small numbers. Usually the number is a power of ten.

Example 3 Use Exponents to Solve a Problem

WATER A molecule of water contains two hydrogen atoms and one oxygen atom. A hydrogen atom is only 0.00000001 centimeter in diameter. Write the decimal as a fraction and as a power of ten.

Water
A single drop of water contains about 10^{20} molecules.

Source: ww.composite.about.com

The digit 1 is in the 100 -millionths place.

$$
\begin{aligned}
0.00000001 & =\frac{1}{100,000,000} & & \text { Write the decimal as a fraction. } \\
& =\frac{1}{10^{8}} & & 100,000,000=10^{8} \\
& =10^{-8} & & \text { Definition of negative exponent }
\end{aligned}
$$

EVALUATE EXPRESSIONS Algebraic expressions containing negative exponents can be written using positive exponents and evaluated.

Example 4 Algebraic Expressions with Negative Exponents

Evaluate n^{-3} if $n=2$.
$n^{-3}=2^{-3} \quad$ Replace n with 2.
$=\frac{1}{2^{3}}$ Definition of negative exponent
$=\frac{1}{8} \quad$ Find 2^{3}.

Check for Understanding

Concept Check 1. OPEN ENDED Write a convincing argument that $3^{0}=1$ using the fact that $3^{4}=81,3^{3}=27,3^{2}=9$, and $3^{1}=3$.
2. Order $8^{-8}, 8^{3}$ and 8^{0} from greatest to least. Explain your reasoning.

Guided Practice Write each expression using a positive exponent.

3. 5^{-2}
4. $(-7)^{-1}$
5. t^{-6}
6. n^{-2}

Write each fraction as an expression using a negative exponent other than $\mathbf{- 1}$.
7. $\frac{1}{3^{4}}$
8. $\frac{1}{9^{2}}$
9. $\frac{1}{49}$
10. $\frac{1}{8}$

ALGEBRA Evaluate each expression if $a=2$ and $b=-3$.
11. a^{-5}
12. $(a b)^{-2}$

Application
13. MEASUREMENT A unit of measure called a micron equals 0.001 millimeter. Write this number using a negative exponent.

Practice and Apply

Homework Help

For Exercises	See Examples
$14-27$	1
$28-35$	2
$36-39$	3
$40-43$	4

Extra Practice
 See page 732.

Write each expression using a positive exponent.
14. 4^{-1}
15. 5^{-3}
16. $(-6)^{-2}$
17. $(-3)^{-3}$
18. 3^{-5}
19. 10^{-4}
20. p^{-1}
21. a^{-10}
22. d^{-3}
23. q^{-4}
24. $2 s^{-5}$
25. $\frac{1}{x^{-2}}$

For Exercises 26 and 27, write each expression using a positive exponent. Then write as a decimal.
26. A snowflake weighs 10^{-6} gram.
27. A small bird uses 5^{-4} Joules of energy to sing a song.

Write each fraction as an expression using a negative exponent other than -1.
28. $\frac{1}{9^{4}}$
29. $\frac{1}{5^{5}}$
30. $\frac{1}{8^{3}}$
31. $\frac{1}{13^{2}}$
32. $\frac{1}{100}$
33. $\frac{1}{81}$
34. $\frac{1}{27}$
35. $\frac{1}{16}$

Write each decimal using a negative exponent.
36. 0.1
37. 0.01
38. 0.0001
39. 0.00001

ALGEBRA Evaluate each expression if $w=-2, x=3$, and $y=-1$.
40. x^{-4}
41. w^{-7}
42. 8^{w}
43. $(x y)^{-6}$

More About.

Physical Science The wavelengths of X rays are between 1 and 10 nanometers.
Source: Biology, Raven
44. PHYSICAL SCIENCE A nanometer is equal to a billionth of a meter. The visible range of light waves ranges from 400 nanometers (violet) to 740 nanometers (red).

a. Write one billionth of a meter as a fraction and with a negative exponent.
b. Use the information at the left to express the greatest wavelength of an X ray in meters. Write the expression using a negative exponent.
45. ANIMALS A common flea 2^{-4} inch long can jump about 2^{3} inches high. How many times its body size can a flea jump?
46. MEDICINE Which type of molecule in the table has a greater mass? How many times greater is it than the other type?

Molecule	Mass (kg)
penicillin	10^{-18}
insulin	10^{-23}

Use the Product of Power and Quotient of Power rules to simplify each
expression.
47. $x^{-2} \cdot x^{-3}$
48. $r^{-5} \cdot r^{9}$
49. $\frac{x^{4}}{x^{7}}$
50. $\frac{y^{6}}{y^{-10}}$
51. $\frac{a^{4} b^{-4}}{a b^{-2}}$
52. $\frac{36 s^{3} t^{5}}{12 s^{6} t^{-3}}$
53. CRITICAL THINKING Using what you learned about exponents, is $\left(x^{3}\right)^{-2}=\left(x^{-2}\right)^{3}$? Why or why not?
54. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.

How do negative exponents represent repeated division?
Include the following in your answer:

- an example of a power containing a negative exponent written in fraction form, and
- a discussion about whether the value of a fraction such as $\frac{1}{2^{n}}$ increases or decreases as the value of n increases.

Standardized Test Practice
(A) B © ©
55. Which is 15^{-5} written as a fraction?
(A) $\frac{1}{5^{5}}$
(B) $\frac{1}{15}$
(C) $\frac{1}{15^{5}}$
(D) $-\frac{1}{15^{5}}$
56. One square millimeter equals
\qquad square centimeter(s).
(Hint: $1 \mathrm{~cm}=10 \mathrm{~mm}$)
(A) 10^{-1}
(B) 10^{-2}
(C) 10^{-3}
(D) 10^{3}

1 cm

Extending Numbers less than 1 can also be expressed in expanded form.
the Lesson Example: $0.568=0.5+0.06+0.008$

$$
=\left(5 \times 10^{-1}\right)+\left(6 \times 10^{-2}\right)+\left(8 \times 10^{-3}\right)
$$

Express each number in expanded form.
57. 0.9
58. 0.24
59. 0.173
60. 0.5875

Maintain Your Skills

Mixed Review Find each product or quotient. Express your answer using exponents.
(Lesson 4-6)
61. $3^{6} \cdot 3$
62. $x^{2} \cdot x^{4}$
63. $\frac{5^{5}}{5^{2}}$
64. ALGEBRA Write $\frac{16 n^{3}}{8 n}$ in simplest form. (Lesson 4-5)

ALGEBRA Use the Distributive Property to rewrite each expression. (Lesson 3-1)
65. $8(y+6)$
66. $(9+k)(-2)$
67. $(n-3) 5$
68. Write the ordered pair that names point P. (Lesson 2-6)

Getting Ready for the Next Lesson

PREREQUISITE SKILL Find each product.
(To review multiplying decimals, see page 715.)
69. 7.2×100
70. 1.6×1000
71. 4.05×10
72. 3.8×0.01
73. 5.0×0.0001
74. 9.24×0.1

Practice Quiz 2 Lessons 4-4 through 4-7

Find the GCF of each set of numbers or monomials. (Lesson 4-4)

1. 15,20
2. 24,30
3. $2 a b, 6 a^{2}$

Write each fraction in simplest form. (Lesson 4-5)
4. SCHOOL What fraction of days were you absent from school this nine-week period if you were absent twice out of 44 days?
5. COMMUNICATION What fraction of E-mail messages did you respond to, if you responded to 6 out of a total of 15 messages?

ALGEBRA Find each product or quotient. Express using exponents. (Lesson 4-6)
6. $4^{2} \cdot 4^{4}$
7. $\left(n^{4}\right)\left(-2 n^{3}\right)$
8. $\frac{q^{9}}{q^{4}}$
9. ALGEBRA Write b^{-6} as an expression using a positive exponent. (Lesson 4-7)
10. ALGEBRA Evaluate x^{-5} if $x=-2$. (Lesson 4-7)

What You'll Learn

- Express numbers in standard form and in scientific notation.
- Compare and order numbers written in scientific notation.

Vocabulary

- scientific notation

Study Tip

Powers of Ten
To multiply by a power of 10 ,

- move the decimal point to the right if the exponent is positive, and
move the decimal point to the left if the exponent is negative. In each case, the exponent tells you how many places to move the decimal point.

Why is scientific notation an important tool in comparing real-world data?

A compact disc or CD has a single spiral track that stores data. It circles from the inside of the disc to the outside. If the track were stretched out in a straight line, it would be

Track Length	Track Width
5000 meters	0.5 micron

a. Write the track length in millimeters.
b. Write the track width in millimeters. (1 micron $=0.001$ millimeter. $)$

SCIENTIFIC NOTATION When you deal with very large numbers like $5,000,000$ or very small numbers like 0.0005 , it is difficult to keep track of the place value. Numbers such as these can be written in scientific notation.

Key Concept

Scientific Notation

- Words

A number is expressed in scientific notation when it is written as the product of a factor and a power of 10 . The factor must be greater than or equal to 1 and less than 10 .

- Symbols $a \times 10^{n}$, where $1 \leq a<10$ and n is an integer
- Examples $5,000,000=5.0 \times 10^{6} \quad 0.0005=5.0 \times 10^{-4}$

Concept Check Is 13.0×10^{2} written in scientific notation? Why or why not?

You can express numbers that are in scientific notation in standard form.

Example 1 Express Numbers in Standard Form

Express each number in standard form.
a. 3.78×10^{6}

$$
\begin{aligned}
3.78 \times 10^{6} & =3.78 \times 1,000,000 & & 10^{6}=1,000,000 \\
& =3,780,000 & & \text { Move the decimal point } 6 \text { places to the right. }
\end{aligned}
$$

b. 5.1×10^{-5}

$$
\begin{aligned}
5.1 \times 10^{-5} & =5.1 \times 0.00001 & & 10^{-5}=0.00001 \\
& =0.000051 & & \text { Move the decimal point } 5 \text { places to the left. }
\end{aligned}
$$

Study Tip

Positive and Negative Exponents
When the number is 1 or greater, the exponent is positive. When the number is between 0 and 1 , the exponent is negative.

Study Tip

Calculator

To enter a number in scientific notation on a calculator, enter the decimal portion, press 2nd [EE], then enter the exponent. A calculator in Sci mode will display answers in scientific notation.

To write a number in scientific notation, place the decimal point after the first nonzero digit. Then find the power of 10 .

Example 2 Express Numbers in Scientific Notation

Express each number in scientific notation.

a. $60,000,000$

$$
\begin{array}{rlrl}
\text { C0,000,000 } & =6.0 \times 10,000,000 & & \text { The decimal point moves } 7 \text { places. } \\
& =6.0 \times 10^{7} & \text { The exponent is positive. }
\end{array}
$$

b. 32,800

$$
\begin{aligned}
32,800 & =3.28 \times 10,000 & & \text { The decimal point moves } 4 \text { places. } \\
& =3.28 \times 10^{4} & & \text { The exponent is positive. }
\end{aligned}
$$

c. 0.0049

0.0049	$=4.9 \times 0.001 \quad$ The decimal point moves 3 places.
	$=4.9 \times 10^{-3} \quad$ The exponent is negative.

People who make comparisons or compute with extremely large or extremely small numbers use scientific notation.

Example 3 Use Scientific Notation to Solve a Problem

SPACE The table shows the planets and their distances from the Sun. Light travels 300,000 kilometers per second. Estimate how long it takes light to travel from the Sun to Pluto. (Hint: Recall that distance $=$ rate \times time.)

Explore You know that the distance from the Sun to Pluto is 5.90×10^{9} kilometers and that the speed of light is 300,000 kilometers per second.

Plan To find the time, solve the equation $d=r t$. Since you are estimating, round the distance 5.90×10^{9} to 6.0×10^{9}. Write the rate 300,000 as 3.0×10^{5}.

Solve

$$
d=r t
$$ Write the formula.

$6.0 \times 10^{9}=\left(3.0 \times 10^{5}\right) t$
Replace d with 6.0×10^{9} and r with 3.0×10^{5}. $\frac{6.0 \times 10^{9}}{3.0 \times 10^{5}} \approx \frac{\left(3.0 \times 10^{5}\right) t}{3.0 \times 10^{5}} \quad$ Divide each side by 3.0×10^{5}.
$2.0 \times 10^{4} \approx t \quad$ Divide 6.0 by 3.0 and 10^{9} by 10^{5}.
So, it would take about 2.0×10^{4} seconds or about 6 hours for light to travel from the Sun to Pluto.

Examine Use estimation to check the reasonableness of these results.

COMPARE AND ORDER NUMBERS To compare and order numbers in scientific notation, first compare the exponents. With positive numbers, any number with a greater exponent is greater. If the exponents are the same, compare the factors.

Example 4 Compare Numbers in Scientific Notation

SPACE Refer to the table in Example 3. Order Mars, Jupiter, Mercury, and Saturn from least to greatest distance from the Sun.

First, order the numbers according to their exponents. Then, order the numbers with the same exponent by comparing the factors.

Step $1 \quad 5.80 \times 10^{7}$
Step 2

Step $15.80 \times 10^{7}<\frac{7.78 \times 10^{8}}{} \quad<1.28 \times 10^{8}<1.43 \times 10^{9}$
Compare the factors: $2.28<7.78$.

So, the order is Mercury, Mars, Jupiter, and Saturn.

Check for Understanding

Concept Check

1. Explain the relationship between a number in standard form and the sign of the exponent when the number is written in scientific notation.
2. OPEN ENDED Write a number in standard form and then write the number in scientific notation, explaining each step that you used.

Guided Practice

Express each number in standard form.
3. 3.08×10^{-4}
4. 1.4×10^{2}
5. 8.495×10^{5}

Express each number in scientific notation.
6. $80,000,000$
7. 697,000
8. 0.059
9. the diameter of a spider's thread, 0.001 inch
10. SPACE Refer to the table in Example 3 on page 187. To the nearest second, how long does it take light to travel from the Sun to Earth?
11. SPACE Rank the planets in the table at the right by diameter, from least to greatest.

Planet	Diameter (km)
Earth	1.276×10^{4}
Mars	6.790×10^{3}
Venus	1.208×10^{4}

Practice and Apply

Homework Help	
For Exercises	See Examples
$12-20$	1
$21-33$	2
34	3
$39-41$	4

Extra Practice See page 733.

More About.

Oceans
In 2000, the International Hydrographic Organization named a fifth world ocean near Antarctica, called the Southern Ocean. It is larger than the Arctic Ocean and smaller than the Indian Ocean.
Source: www.geography. about.com

Express each number in standard form.
12. 4.24×10^{2}
13. 5.72×10^{4}
14. 3.347×10^{-1}
15. 5.689×10^{-3}
16. 6.1×10^{4}
17. 9.01×10^{-2}
18. 1.399×10^{5}
19. 2.505×10^{3}
20. 1.5×10^{-4}

Express each number in scientific notation.
21. 2,000,000
22. 499,000
23. 0.006
24. 0.0125
25. 50,000,000
26. 39,560
27. 5,894,000
28. 0.000078
29. 0.000425
30. The flow rate of some Antarctic glaciers is 0.00031 mile per hour.
31. Humans blink about 6.25 million times a year.
32. The number of possible ways that a player can play the first four moves in a chess game is 3 billion.
33. A particle of dust floating in the air weighs 0.000000753 gram.
34. SPACE Refer to the table in Example 3 on page 187. To the nearest second, how long does it take light to travel from the Sun to Venus?

Choose the greater number in each pair.

35. $2.3 \times 10^{5}, 1.7 \times 10^{5}$
36. $1.8 \times 10^{3}, 1.9 \times 10^{-1}$
37. $5.2 \times 10^{2}, 5000$
38. $0.012,1.6 \times 10^{-1}$
39. OCEANS Rank the oceans in the table at the right by area from least to greatest.

Ocean	Area $($ sq $\mathbf{~ m i})$
Arctic	5.44×10^{6}
Atlantic	3.18×10^{7}
Indian	2.89×10^{7}
Pacific	6.40×10^{7}

40. MEASUREMENT The table at the right shows the values of different prefixes that are used in the metric system. Write the units attometer, gigameter, kilometer, nanometer, petameter, and picometer in order from greatest to least measure.
41. Order $6.1 \times 10^{4}, 6100,6.1 \times 10^{-5}, 0.0061$, and 6.1×10^{-2} from least to greatest.
42. Write $\left(6 \times 10^{0}\right)+\left(4 \times 10^{-3}\right)+\left(3 \times 10^{-5}\right)$ in

Metric Measures	
Prefix	Meaning
atto	10^{-18}
giga	10^{9}
kilo	10^{3}
nano	10^{-9}
peta	10^{15}
pico	10^{-12}

43. Write $\left(4 \times 10^{4}\right)+\left(8 \times 10^{3}\right)+\left(3 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(6 \times 10^{0}\right)$ in standard form.

Convert the numbers in each expression to scientific notation. Then evaluate the expression. Express in scientific notation and in decimal notation.
44. $\frac{20,000}{0.01}$
45. $\frac{(420,000)(0.015)}{0.025}$
46. $\frac{(0.078)(8.5)}{0.16(250,000)}$

Standardized Test Practice

PHYSICAL SCIENCE For Exercises 47 and 48, use the graph.
The graph shows the maximum amounts of lava in cubic meters per second that erupted from seven volcanoes in the last century.
47. Rank the volcanoes in order from greatest to least eruption rate.
48. How many times larger was the Santa Maria eruption than the Mount St. Helens eruptions?

Eruption Rates	
Mount	
St. Helens, 1980	2.0×10^{4}
Ngauruhoe, 1975	2.0×10^{3}
Hekla, 1970	4.0×10^{3}
Agung, 1963	3.0×10^{4}
Bezymianny, 1956	2.0×10^{5}
Hekla, 1947	2.0×10^{4}
Santa Maria, 1902	4.0×10^{4}

Source: University of Alaska

Online Research Data Update How do the eruption rates of other volcanoes compare with those in the graph? Visit www.pre-alg.com/data_update to learn more.
49. CRITICAL THINKING In standard form, $3.14 \times 10^{-4}=0.000314$, and $3.14 \times 10^{4}=31,400$. What is 3.14×10^{0} in standard form?
50. WRITING IN MATH Answer the question that was posed at the beginning of the lesson.
Why is scientific notation an important tool in comparing real-world data?
Include the following in your answer:

- some real-world data that is written in scientific notation, and
- the advantages of using scientific notation to compare data.

51. If the bodies of water in the table are ordered from least to greatest area, which would be third in the list?
(A) Lake Huron
(B) Lake Victoria
(C) Red Sea
(D) Great Salt Lake
52. Which is 5.80×10^{-4} written in standard

Body of Water	Area $\left(\mathbf{k m}^{2}\right)$
Lake Huron	5.7×10^{4}
Lake Victoria	6.9×10^{4}
Red Sea	4.4×10^{5}
Great Salt Lake	4.7×10^{3}

(A) 58,000
(B) 5800
(C) 0.58
(D) 0.00058

Maintain Your Skills

Mixed Review ALGEBRA Evaluate each expression if $s=-2$ and $t=3$. (Lesson 4-7)

53. t^{-4}
54. s^{-5}
55. $7^{\text {s }}$

ALGEBRA Find each product or quotient. Express using exponents.
(Lesson 4-6)
56. $4^{4} \cdot 4^{7}$
57. $3 a^{2} \cdot 5 a^{2}$
58. $c^{5} \div c^{2}$
59. BUSINESS Online Book Distributors add a $\$ 2.50$ shipping and handling charge to the total price of every order. If the cost of books in an order is c, write an expression for the total cost. (Lesson 1-3)

Vocabulary and Concept Check

algebraic fraction (p. 170)
base (p. 153)
base two (p. 158)
binary (p. 158)
composite number (p. 159)
divisible (p. 148)
expanded form (p. 154)
exponent (p. 153)
factor (p. 161)
factors (p. 148)
factor tree (p. 160)
greatest common factor (GCF) (p. 164)
monomial (p. 150)
power (p. 153)
prime factorization (p. 160)
prime number (p. 159)
scientific notation (p. 186)
simplest form (p. 169)
standard form (p. 154)
Venn diagram (p. 164)

Determine whether each statement is true or false. If false, replace the underlined word or number to make a true statement.

1. A prime number is a whole number that has exactly two factors, 1 and itself.
2. Numbers expressed using exponents are called powers.
3. The number 7 is a factor of 49 because it divides 49 with a remainder of zero.
4. A monomial is a number, a variable, or a sum of numbers and/or variables.
5. The number 64 is a composite number.
6. The number 9,536 is written in standard form .
7. To write a fraction in simplest form, divide the numerator and the denominator by the GCF .
8. A fraction is in simplest form when the GCF of the numerator and the denominator is 2 .

Lesson-by-Lesson Review

4-1 Factors and Monomials

See pages
 148-152.

Concept Summary

- Numbers that are multiplied to form a product are called factors.

Example Determine whether 102 is divisible by $2,3,5,6$, or 10.

2: Yes, the ones digit is divisible by 2.
3: Yes, the sum of the digits is 3 , and 3 is divisible by 3 .
5: No, the ones digit is not 0 or 5 .
6: Yes, the number is divisible by 2 and by 3 .
10: No, the ones digit is not 0 .
Exercises Use divisibility rules to determine whether each number is divisible by 2, 3, 5, 6, or 10. See Example 1 on page 149.
9. 111
10. 405
11. 635
12. 863
13. 582
14. 2124
15. 700
16. 4200

Chapter 4 Study Guide and Review

4-2 Powers and Exponents

See pages 153-157.

Concept Summary

- An exponent is a shorthand way of writing repeated multiplication.
- A number can be written in expanded form by using exponents.
- Follow the order of operations to evaluate algebraic expressions containing exponents.

Example Evaluate $4(a+2)^{3}$ if $a=-5$.

$$
\begin{aligned}
4(a+2)^{3} & =4(-5+2)^{3} & & \text { Replace } a \text { with }-5 . \\
& =4(-3)^{3} & & \text { Simplify the expression inside the parentheses. } \\
& =4(-27) & & \text { Evaluate }(-3)^{3} . \\
& =-108 & & \text { Simplify. }
\end{aligned}
$$

Exercises Evaluate each expression if $x=-3, y=4$, and $z=-2$.
See Example 3 on page 155.
17. 3^{3}
18. 10^{4}
19. $(-5)^{2}$
20. y^{3}
21. $10 x^{2}$
22. $x y^{3}$
23. $7 y^{0} z^{4}$
24. $2(3 z+4)^{5}$

4-3 Prime Factorization

See pages Concept Summary

- A prime number is a whole number that has exactly two factors, 1 and itself.
- A composite number is a whole number that has more than two factors.

Example Write the prime factorization of 40.

The prime factorization of 40 is $2 \cdot 2 \cdot 2 \cdot 5$ or $2^{3} \cdot 5$.

Example Factor $9 s^{3} t^{2}$.

$$
\begin{array}{rlrl}
9 s^{3} t^{2} & =3 \cdot 3 \cdot s^{3} \cdot t^{2} & & 9=3 \cdot 3 \\
& =3 \cdot 3 \cdot s \cdot s \cdot s \cdot t \cdot t & s^{3} \cdot t^{2}=s \cdot s \cdot s \cdot t \cdot t
\end{array}
$$

Exercises Write the prime factorization of each number. Use exponents for repeated factors. See Example 2 on page 160.
25. 45
26. 55
27. 68
28. 200

Factor each monomial. See Example 3 on page 161.
29. 49 k
30. $-15 n^{2}$
31. $26 p^{3}$
32. $10 a^{2} b$

4-4 Greatest Common Factor (GCF)

See pages
164-168.

Concept Summary

- The greatest number or monomial that is a factor of two or more numbers or monomials is the GCF.
- The Distributive Property can be used to factor algebraic expressions.

Examples 1 Find the GCF of $12 a^{2}$ and $15 a b$.
$12 a^{2}=2 \cdot 2 \cdot\left(\begin{array}{l}3 \\ 3 \\ 15 a b\end{array}\right) \cdot 5 \cdot\left[\begin{array}{l}a \\ a\end{array}\right) \cdot a$
b The GCF of $12 a^{2}$ and $15 a b$ is $3 \cdot a$ or $3 a$.

2 Factor $4 n+8$.

Step 1 Find the GCF of $4 n$ and 8 .

$$
\begin{aligned}
& 4 n=2 \\
& 8=2 \cdot\left[\begin{array}{l}
2 \\
2
\end{array}\right] \cdot n \quad 2 \quad \text { The GCF is } 2 \cdot 2 \text { or } 4 .
\end{aligned}
$$

Step 2 Write the product of the GCF and its remaining factors.

$$
\begin{aligned}
4 n+8 & =4(n)+4(2) & & \text { Rewrite each term using the GCF. } \\
& =4(n+2) & & \text { Distributive Property }
\end{aligned}
$$

Exercises Find the GCF of each set of numbers or monomials.
See Examples 2 and 4 on pages 165 and 166.
33. 6,48
34. 16, 24
35. $4 n, 5 n^{2}$
36. $20 c^{3} d, 12 c d$

Factor each expression. See Example 5 on page 166.
37. $2 t+20$
38. $3 x+24$
39. $30+4 n$

4-5 Simplifying Algebraic Fractions

See pages 169-173.

Concept Summary

- Algebraic fractions can be written in simplest form by dividing the numerator and the denominator by the GCF.

Example

Simplify $\frac{8 n p}{18 n^{2}}$.

$$
\begin{array}{rlrl}
\frac{8 n p}{18 n^{2}} & =\frac{\frac{1}{2 \cdot 2 \cdot 2 \cdot n \cdot n} \frac{1}{2 \cdot 3 \cdot 3 \cdot n \cdot n}}{1} & \begin{array}{l}
\text { Divide the numerator and the } \\
\text { denominator by the GCF, } 2 \cdot n .
\end{array} \\
& =\frac{4 p}{9 n} & & \text { Simplify. }
\end{array}
$$

Exercises Write each fraction in simplest form. If the fraction is already in simplest form, write simplified. See Examples 2 and 4 on page 170.
40. $\frac{6}{21}$
41. $\frac{24}{40}$
42. $\frac{15}{16}$
43. $\frac{30}{51}$
44. $\frac{s t}{t^{4}}$
45. $\frac{23 x}{32 y}$
46. $\frac{9 m n}{18 n^{2}}$
47. $\frac{15 a c^{2}}{24 a b}$

4-6 Multiplying and Dividing Monomials

See pages 175-179.

Concept Summary

- Powers with the same base can be multiplied by adding their exponents.
- Powers with the same base can be divided by subtracting their exponents.

Examples
1 Find $x^{3} \cdot x^{2}$
$\begin{aligned} x^{3} \cdot x^{2} & =x^{3+2} & & \text { The common base is } x . \\ & =x^{5} & & \text { Add the exponents. }\end{aligned}$

2 Find $\frac{4^{5}}{4^{3}}$.
$\frac{4^{5}}{4^{3}}=4^{5-3} \quad$ The common base is 4 .
$=4^{2} \quad$ Subtract the exponents.

Exercises Find each product or quotient. Express using exponents.
See Examples 1-3 on pages 176 and 177.
48. $8^{4} \cdot 8^{5}$
49. $c \cdot c^{3}$
50. $\frac{3^{7}}{3^{2}}$
51. $\frac{r^{11}}{r^{9}}$
52. $7 x \cdot 2 x^{6}$

4-7 Negative Exponents

See pages 181-185.

Concept Summary

- For $a \neq 0$ and any integer $n, a^{-n}=\frac{1}{a^{n}}$.

Example Write 3^{-4} as an expression using a positive exponent.
$3^{-4}=\frac{1}{3^{4}} \quad$ Definition of negative exponent
Exercises Write each expression using a positive exponent.
See Example 1 on page 182.
53. 7^{-2}
54. 10^{-1}
55. b^{-4}
56. t^{-8}
57. $(-4)^{-3}$

4-8 Scientific Notation

See pages 186-190.

Concept Summary

- A number in scientific notation contains a factor and a power of 10 .

Examples 1 Express $3.5 \times 10^{\mathbf{- 2}}$ in standard form.

$$
\begin{aligned}
3.5 \times 10^{-2} & =3.5 \times 0.01 & & 10^{-2}=0.01 \\
& =0.035 & & \text { Move the decimal point } 2 \text { places to the left. }
\end{aligned}
$$

2 Express 269,000 in scientific notation.

$$
=2.69 \times 10^{5} \quad \text { The exponent is positive. }
$$

Exercises Express each number in standard form. See Example 1 on page 186.
58. 6.1×10^{2}
59. 2.9×10^{-3}
60. 1.85×10^{-2}
61. 7.045×10^{4}

Express each number in scientific notation. See Example 2 on page 187.
62. 1200
63. 0.008
64. 0.000319
65. 45,710,000

Practice Test

Vocabulary and Concepts

1. Explain how to use the divisibility rules to determine whether a number is divisible by $2,3,5,6$, or 10 .
2. Explain the difference between a prime number and a composite number.
3. OPEN ENDED Write an algebraic fraction that is in simplest form.

Skills and Applications

Determine whether each expression is a monomial. Explain why or why not.
4. $6 x y z$
5. $-2 m+9$

Write each expression using exponents.
6. $3 \cdot 3 \cdot 3 \cdot 3$
7. $-2 \cdot-2 \cdot-2 \cdot a \cdot a \cdot a \cdot a$

Factor each expression.
8. $12 r^{2}$
9. $50 x y^{2}$
10. $7+21 p$

Find the GCF of each set of numbers or monomials.
11. 70,28
12. $36,90,180$
13. $12 a^{3} b, 40 a b^{4}$

Write each fraction in simplest form. If the fraction is already in simplest form, write simplified.
14. $\frac{57}{95}$
15. $\frac{240}{360}$
16. $\frac{56 m^{3} n}{32 m n}$

Find each product or quotient. Express using exponents.
17. $5^{3} \cdot 5^{6}$
18. $\left(4 x^{7}\right)\left(-6 x^{3}\right)$
19. $w^{9} \div w^{5}$

Write each expression using a positive exponent.
20. 4^{-2}
21. t^{-6}
22. $(y z)^{-3}$

Write each number in standard form.
23. 9.0×10^{-2}
24. 5.206×10^{-3}
25. 3.71×10^{4}

Write each number in scientific notation.
26. 345,000
27. 1,680,000
28. 0.00072
29. BAKING A recipe for butter cookies requires 12 tablespoons of sugar for every 16 tablespoons of flour. Write this as a fraction in simplest form.
30. STANDARDIZED TEST PRACTICE Earth is approximately 93 million miles away from the Sun. Express this distance in scientific notation.
(A) $9.3 \times 10^{7} \mathrm{mi}$
(B) $9.3 \times 10^{6} \mathrm{mi}$
(C) $93 \times 10^{6} \mathrm{mi}$
(D) $93,000,000 \mathrm{mi}$

Part 1 Multiple Choice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. Andy has 7 fewer computer games than Ling. Carlos has twice as many computer games as Andy. If Ling has x computer games, which of these represents the number of computer games that Carlos has? (Lesson 1-3)
(A) $7-2 x$
(B) $x-7$
(C) $2 x-7$
(D) $2(x-7)$
2. Which of the following statements is false, when r, s, and t are different integers? (Lesson 1-4)
(A) $(r s) t=r(s t)$
(B) $r+s=s+r$
(C) $r s=s r$
(D) $r-s=s-r$
3. The low temperatures during the past five days are given in the table. Find the average (mean) of the temperatures. (Lesson 2-5)

Day	1	2	3	4	5
Temperature $\left({ }^{\circ} \mathrm{F}\right)$	-2	0	4	5	4

(A) $3^{\circ} \mathrm{F}$
(B) $2.2^{\circ} \mathrm{F}$
(C) $13^{\circ} \mathrm{F}$
(D) $2.75^{\circ} \mathrm{F}$
4. Which coordinates are most likely to be the coordinates of point P ?
(Lesson 2-6)
(A) $(-13,7)$
(B) $(7,-13)$
(C) $(13,7)$

$$
\text { (D) }(7,13)
$$

Test-Taking Tip

$B C D$

Question 2

When a multiple-choice question asks you to verify statements that include variables, you can substitute numbers into the variables to determine which statements are true and which are false.
5. Solve $3 n-6=-39$ for n. (Lesson 3-5)
(A) -15
(B) -11
(C) 11
(D) 15
6. For every order purchased from an Internet bookstore, the shipping and handling charges include a base fee of $\$ 5$ plus a fee of $\$ 3$ per item purchased in the order. Which equation represents the shipping and handling charge for ordering n items?
(Lesson 3-6)
(A) $S=5(3 n)$
(B) $S=3 n-5$
(C) $S=5+\frac{3}{n}$
(D) $S=5+3 n$
7. The area of the rectangle below is 18 square units. Use the formula $A=\ell w$ to find its width. (Lesson 3-7)
(A) $\frac{1}{3}$ unit
(B) 2 units
(C) 3 units
(D) 12 units

8. Write the prime factorization of 84 .
(Lesson 4-3)
(A) $2 \cdot 3 \cdot 7$
(B) $4 \cdot 21$
(C) $3 \cdot 4 \cdot 7$
(D) $2 \cdot 2 \cdot 3 \cdot 7$
9. What is the greatest common factor of 28 and 42? (Lesson 4-4)
(A) 2
(B) 7
(C) 14
(D) 28
10. Write 3^{-3} as a fraction. (Lesson 4-7)
(A) $-\frac{1}{9}$
(B) $-\frac{1}{27}$
(C) $\frac{1}{27}$
(D) $\frac{1}{9}$
11. Asia is the largest continent. It has an area of $17,400,000$ square miles. What is $17,400,000$ expressed in scientific notation? (Lesson 4-8)
(A) 174×10^{5}
(B) 1.74×10^{7}
(C) 174×10^{7}
(D) 1.74×10^{8}

Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

12. A health club charges an initial fee of $\$ 60$ for the first month, and then a $\$ 28$ membership fee each month after the first month, as shown in the table. What is the

Number of Months	Total Cost (\$)
1	60
2	88
3	116
4	144
5	172

(Lesson 1-1)
13. The temperature in Concord at 5 P.M. was -3 degrees. By midnight, the temperature had dropped 9 degrees. What was the temperature at midnight? (Lesson 2-3)
14. A skating rink charges $\$ 2.00$ to rent a pair of skates and $\$ 1.50$ per hour of skating. Jeff wants to spend no more than $\$ 8.00$ and he needs to rent skates. How many hours can he skate? (Lesson 3-5)
15. At a birthday party, Maka gave 30 gel pens to her friends as prizes. Everyone got at least 1 gel pen. Six friends got just 1 gel pen each, 4 friends got 3 gel pens each for winning games, and the rest of the friends got 2 gel pens each. How many friends got 2 gel pens? (Lesson 3-6)
16. A table 8 feet long and 2 feet wide is to be covered for the school bake sale. If organizers want the covering to hang down 1 foot on each side, what is the area of the covering that they need? (Lesson 3-7)
17. What is the least 3-digit number that is divisible by 3 and 5? (Lesson 4-1)
18. Write $10 \cdot 10 \cdot 10 \cdot 10$ using an exponent. (Lesson 4-2)
19. Find the greatest common factor of 18,44 , and 12. (Lesson 4-4)
20. Write $\frac{1}{5 \cdot 5 \cdot 5}$ using a negative exponent. (Lesson 4-7)
21. The Milky Way galaxy is made up of about 200 billion stars, including the Sun. Write this number in scientific notation. (Lesson 4-8)

Part 3 Extended Response

Record your answers on a sheet of paper. Show your work.

22. Chandra plans to order CDs from an Internet shopping site. She finds that the CD prices are the same at three different sites, but that the shipping costs vary. The shipping costs include a fee per order, plus an additional fee for each item in the order, as shown in the table below. (Lesson 3-6)

Company	Shipping Cost	
	Per Order	Per Item
CDBargains	$\$ 4.00$	$\$ 1.00$
WebShopper	$\$ 6.00$	$\$ 3.00$
EverythingStore	$\$ 2.50$	$\$ 1.50$

a. For each company, write an equation that represents the shipping cost. In each of your three equations, use S to represent the shipping cost and n to represent the number of items purchased.
b. If Chandra orders 2 CDs, which company will charge the least for shipping? Use the equations you wrote and show your work.
c. If Chandra orders 10 CDs , which company will charge the least for shipping? Use the equations you wrote and show your work.
d. For what number of CDs do both CDBargains and EverythingStore charge the same amount for shipping and handling costs?

[^0]: Source: Animals as Our Companions, Wildlife Fact File

